Advertisement

HCS(A2A″)-based insights into the effect of vibrational excitation on the reactions C+SH (v = 0–20, j = 0) → S+CH, H+CS

  • Da-Guang Yue
  • Lu-Lu Zhang
  • Juan Zhao
  • Yu-Zhi Song
  • Qing-Tian MengEmail author
Regular Article
  • 18 Downloads

Abstract

The effect of vibrational excitation on reaction C+SH (v = 0–20, j = 0) → S+CH, H+CS is investigated on the excited potential energy surface of HCS(A2A″) by the quasi-classical trajectory method. The obtained reaction probability, total integral cross section (ICS), and the impact parameter show that the influence of vibration excitation presents different characteristics on different reaction channels. The vibrational state-resolved ICSs, differential cross sections as well as two-angle distribution functions P(θr), P(ϕr) of products for different vibrational quantum numbers of reactant are investigated. These results show that (i) the products have obvious forward–backward scattering feature; (ii) for different reactions, the distribution P(θr) varies with vibrational quantum number of reactant; (iii) at high vibrational excitations of the reactant, the insertion mechanism becomes apparent in this reaction, so the product molecules are more positively oriented along the positive direction of the scattering plane.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    R.I. Kaiser, W. Sun, A.G. Suits, J. Chem. Phys. 106, 5288 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    H.H. Lee, R.P.A. Bettens, E. Herbst, Astron. Astrophys. Suppl. Ser. 119, 111 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    H. Habara, S. Yamamoto, C. Ochsenfeld, M. Head-Gordon, R.I. Kaiser, Y.T. Lee, J. Chem. Phys. 108, 8859 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    H. Habara, S. Yamamoto, T. Amano, J. Chem. Phys. 116, 9232 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    H. Habara, S. Yamamoto, J. Chem. Phys. 112, 10905 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    H. Habara, S. Yamamoto, J. Mol. Spectrosc. 219, 30 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Agúndez, N. Marcelino, J. Cernicharo, M. Tafalla, Astron. Astrophys. 611, L1 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Y.Z. Song, L.L. Zhang, S.B. Gao, Q.T. Meng, Sci. Rep. 6, 37734 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L.L. Zhang, S.B. Gao, Y.Z. Song, Q.T. Meng, J. Phys. B: At. Mol. Opt. Phys. 51, 065202 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    L.L. Zhang, S.B. Gao, Y.Z. Song, D.G. Yue, G.M. Chen, Q.T. Meng, Can. J. Phys. 95, 1219 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    T. Stoecklin, P. Halvick, J.C. Rayez, J. Mol. Struct. (Theochem.) 163, 267 (1988)CrossRefGoogle Scholar
  12. 12.
    T. Stoecklin, J.C. Rayez, B. Duguay, Chem. Phys. 148, 381 (1990)CrossRefGoogle Scholar
  13. 13.
    T. Stoecklin, J. Rayez, B. Duguay, Chem. Phys. 148, 399 (1990)CrossRefGoogle Scholar
  14. 14.
    A.I. Voronin, Chem. Phys. 297, 49 (2004)CrossRefGoogle Scholar
  15. 15.
    J.C. Yuan, Z.X. Duan, S.F. Wang, J.Y. Liu, K.L. Han, Phys. Chem. Chem. Phys. 20, 20641 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Zanchet, O. Roncero, N. Bulut, Phys. Chem. Chem. Phys. 18, 11391 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Zhang, X.-M. Qian, X.N. Tang, C.Y. Ng, Y. Chiu, D.J. Levandier, J.S. Miller, R.A. Dressler, J. Chem. Phys. 119, 10175 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Dressler, Y. Chiu, J. Chem. Phys. 125, 132306 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    P. Gamallo, R. Martinez, J.D. Sierra, M. Gonzalez, Phys. Chem. Chem. Phys. 16, 6641 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Mayneris, J.D. Sierra, M. González, J. Chem. Phys. 128, 194307 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    J. Mayneris-Perxachs, M. González, J. Phys. Chem. A 113, 4105 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Gamallo, P. Defazio, M. González, J. Phys. Chem. 115, 11525 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Gamallo, F. Huarte-Larrañaga, M. González, J. Phys. Chem. A 117, 5393 (2013)CrossRefGoogle Scholar
  24. 24.
    H.W. Song, H. Guo, J. Phys. Chem. A 119, 6188 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.H. Wang, M. Peng, J.Y. Tong, Y.L. Wang, J. Chem. Sci. 127, 1497 (2015)CrossRefGoogle Scholar
  26. 26.
    S.B. Gao, J. Zhang, Y.Z. Song, Q.T. Meng, Eur. Phys. J. D 69, 111 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S.B. Gao, L.L. Zhang, Y.Z. Song, Q.T. Meng, Chem. Phys. Lett. 651, 233 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhang, S.B. Gao, H. Wu, Q.T. Meng, J. Phys. Chem. A 119, 8959 (2015)CrossRefGoogle Scholar
  29. 29.
    X.L. Wang, F. Gao, S.B. Gao, L.L. Zhang, Y.Z. Song, Q.T. Meng, Chin. Phys. B 27, 043104 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Y.Z. Song, L.L. Zhang, E. Cao, Q.T. Meng, M.Y. Ballester, Theor. Chem. Acc. 136, 38 (2017)CrossRefGoogle Scholar
  31. 31.
    L.L. Zhang, Y.Z. Song, S.B. Gao, Q.T. Meng, J. Phys. Chem. A 122, 4390 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Karplus, R.N. Porter, R.D. Sharma, J. Chem. Phys. 43, 3259 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    G.C. Schatz, M.C. Colton, J.L. Grant, J. Phys. Chem. 88, 2971 (1984)CrossRefGoogle Scholar
  34. 34.
    R. Sayós, J. Hernando, R. Francia, M. González, Phys. Chem. Chem. Phys. 2, 523 (2000)CrossRefGoogle Scholar
  35. 35.
    M. González, I. Miquel, R. Sayós, J. Chem. Phys. 115, 2530 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    K.L. Han, L. Zhang, D.L. Xu, G.Z. He, N.Q. Lou, J. Phys. Chem. A 105, 2956 (2001)CrossRefGoogle Scholar
  38. 38.
    M.D. Chen, K.L. Han, N.Q. Lou, Chem. Phys. Lett. 357, 483 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    J. Davidsson, G. Nyman, J. Chem. Phys. 92, 2407 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    G. Nyman, J. Davidsson, J. Chem. Phys. 92, 2415 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    A.J.C. Varandas, Chem. Phys. Lett. 225, 18 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    A. Karton, J.M.L. Martin, Theor. Chem. Acc. 115, 330 (2006)CrossRefGoogle Scholar
  43. 43.
    A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    A.J.C. Varandas, J. Chem. Phys. 113, 8880 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Robert J. Le Roy, J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    F.J. Aoiz, L. Banares, V.J. Herrero, J. Phys. Chem. A 110, 12546 (2006)CrossRefGoogle Scholar
  47. 47.
    P.G. Jambrina, I. Montero, F.J. Aoiz, J. Aldegunde, J.M. Alvarino, Phys. Chem. Chem. Phys. 14, 16338 (2012)CrossRefGoogle Scholar
  48. 48.
    R.S. Tan, H.C. Zhai, F. Gao, D.M. Tong, S.Y. Lin, Phys. Chem. Chem. Phys. 18, 15673 (2016)CrossRefGoogle Scholar
  49. 49.
    J.C. Polanyi, Angew. Chem. Int. Ed. 26, 952 (2010)CrossRefGoogle Scholar
  50. 50.
    J. Zhao, Y. Luo, Chin. Phys. B 20, 043402 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    X. Zhang, T.X. Xie, M.Y. Zhao, K.L. Han, Chin. J. Chem. Phys. 15, 169 (2002)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Da-Guang Yue
    • 1
    • 2
  • Lu-Lu Zhang
    • 2
  • Juan Zhao
    • 2
  • Yu-Zhi Song
    • 1
  • Qing-Tian Meng
    • 1
    Email author
  1. 1.School of Physics and Electronics, Shandong Normal UniversityJinanP.R. China
  2. 2.School of Science, Shandong Jiaotong UniversityJinanP.R. China

Personalised recommendations