Tunable nonlinear measurement of microwave electric fields with a dressed-state analysis

  • Yandong PengEmail author
  • Zhongjian Zhang
  • Jinling Wang
  • Bing Chen
  • Qingtian ZengEmail author
  • Yuxia LiEmail author
Regular Article


A nonlinear absorption spectrum is proposed for measuring microwave electric fields with tunable sensitivity using electromagnetically induced transparency (EIT) in Rydberg atoms. Interacting dark resonances could enhance the nonlinear absorption, which shows a linear relationship with the microwave field (MW) strength. Compared with the linear case, the nonlinear measurement of MW field improves spectrum resolution by about one order of magnitude, the nonlinearity increases the EIT peak values by about two orders of magnitude, moreover the probe sensitivity could be improved by ten times from simulation. It is found that increasing the ratio of two coupling fields can improve probe sensitivity. The maximum probe sensitivity is predicted and explained. The above results can be well understood with the aid of the dressed-state theory.

Graphical abstract


Atomic Physics 


  1. 1.
    B. Chen, C. Qiu, S. Chen, J. Guo, L. Chen, Z. Ou, W. Zhang, Phys. Rev. Lett. 115, 043602 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    P. Chen, C. Shu, X. Guo, M. Loy, S. Du, Phys. Rev. Lett. 114, 010401 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    C. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    K. Zhang, F. Bariani, Y. Dong, W. Zhang, P. Meystre, Phys. Rev. Lett. 114, 113601 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    C.L. Holloway, J.A. Gordon, S. Jefferts, A. Schwarzkopf, D.A. Anderson, S.A. Miller, N. Thaicharoen, G. Raithel, IEEE Trans. Antennas Propag. 62, 6169 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    J. Che, W. Jiang, G. Lan, S. Wang, S. Xiang, Y. Zhang, Opt. Commun. 433, 150 (2019).ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Hall, Rev. Mod. Phys. 78, 7279 (2006).CrossRefGoogle Scholar
  8. 8.
    D.J. Lee, J.Y. Kwon, N.W. Kang, J.F. Whitaker, Opt. Express 19, 14437 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S.E. Harris, Phys. Today 50, 36 (1997).CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. Miri, D. Christodoulides, B. He, Y. Zhang, M. Xiao, Phys. Rev. Lett. 117, 123601 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    K. Xia, F. Nori, M. Xiao, Phys. Rev. Lett. 121, 203602 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    S.C. Zhang, Y.Q. Hu, G.W. Lin, Y.P. Niu, K.Y. Xia, J.B. Gong, S.Q. Gong, Nat. Photonics 12, 755 (2018).Google Scholar
  13. 13.
    J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Nat. Phys. 8, 819 (2012).CrossRefGoogle Scholar
  14. 14.
    M.G. Bason, M. Tanasittikosol, A. Sargyan, A.K. Mohapatra, D. Sarkisyan, P.M. Potvliege, C.S. Adams, New J. Phys. 12, 065015 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Phys. Rev. Lett. 111, 063001 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Anderson, S.A. Miller, G. Raithel, J.A. Gordon, M.L. Butler, C.L. Holloway, Phys. Rev. Appl. 5, 034003 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    L. Wang, H. Zhang, L. Zhang, G. Raithel, J. Zhao, S. Jia, Phys. Rev. A 92, 033619 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    H. Busche, P. Huillery, S. Ball, T. Ilieva, M. Jones, C. Adams, Nat. Phys. 13, 665 (2017).CrossRefGoogle Scholar
  19. 19.
    H.Q. Fan, S. Kumar, J.T. Sheng, J.P. Shaffer, Phys. Rev. Appl. 4, 044015 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    M.T. Simons, J.A. Gordon, C.L. Holloway, D.A. Anderson, S.A. Miler, G. Raithel, Appl. Phys. Lett. 108, 174101 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    S. Kümar, H.Q. Fan, H. Kubler, A.J. Jahangiri, J.P. Shaffer, Opt. Express 25, 8625 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    Y.P. Niu, S.Q. Gong, R.X. Li, Z.Z. Xu, X.Y. Liang, Opt. Lett. 30, 3371 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    Y.H. Han, J. Xiao, Y. Liu, Ch Zhang, H. Wang, M. Xiao, K. Peng, Phys. Rev. A 77, 023824 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    L.D. Zhang, T.N. Dey, J. Evers, Phys. Rev. A 87, 043842 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    S. Evangelou, V. Yannopapas, E. Paspalakis, J. Mod. Opt. 61, 1458 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    D. Stefanatos, E. Paspalakis, Opt. Lett. 43, 3313 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    C. Zhu, C. Huang, G. Huang, Eur. Phys. J. D 56, 231 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Peng, A. Yang, Y. Xu, P. Wang, Y. Yu, H. Guo, T. Ren, Sci. Rep. 6, 38251 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Peng, A. Yang, L. Jiang, L. Meng, J. Liu, Eur. Phys. J. D 68, 152 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    G. Lin, Y. Qi, X. Lin, Y. Niu, S. Gong, Phys. Rev. A 92, 043842 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Peng, A. Yang, B. Chen, L. Li, S. Liu, H. Guo, Appl. Phys. Lett. 109, 141101 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    C. Li, K. Wang, J. Wang, J. Zhang, Y. Peng, J. Shandong Uni. Sci. Technol. 37, 93 (2018).Google Scholar
  33. 33.
    G.W. Lin, S.C. Zhang, Y.Q. Hu, Y.P. Niu, Phys. Rev. Lett 123, 033902 (2019).ADSCrossRefGoogle Scholar
  34. 34.
    M. Scully, M. Zubairy, Quantum Optics (Cambridge University, 1997).Google Scholar
  35. 35.
    X. Li, Q. Zhao, J. Geom. Phys. 121, 123 (2017).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Schmidt, A. Imamoglu, Opt. Lett. 21, 1936 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    C. Ottaviani, S. Rebic, D. Vitali, P. Tombesi, Eur. Phys. J. D 40, 281 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Niu, S.Q. Gong, Phys. Rev. A. 73, 053811 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Peng, Z. Zhang, X. Wang, S. Liu, A. Yang, X. Wang, Opt. Quantum Electron. 50, 311 (2018).CrossRefGoogle Scholar
  40. 40.
    A.K. Mohapatra, T.R. Jackon, C.S. Adams, Phys. Rev. Lett. 98, 113003 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    C.L. Holloway, M.T. Simons, J.A. Gordon, A. Dienstfrey, D.A. Anderson, G. Raithel, J. Appl. Phys. 121, 233106 (2017).ADSCrossRefGoogle Scholar
  42. 42.
    A. Tauschinsky, R. Newell, H.B. van Linden van den Heuvell, R.J.C. Spreeuw, Phys. Rev. A. 87, 042522 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    M.D. Lukin, S.F. Yelin, M. Fleischhauer, M.O. Scully, Phys. Rev. A 60, 3225 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    L. Zhang, F. Zhou, Y. Niu, J. Zhang, S. Gong, Opt. Commun. 284, 5697 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    L. Zhang, Y. Jiang, R. Wan, S. Tian, B. Shang, X. Zhang, J. Gao, Y. Niu, S. Gong, J. Phys. B 44, 135505 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    D. Yan, Y. Liu, Q. Bao, C. Fu, J. Wu, Phy. Rev. A 86, 023828 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    M. Yan, E.G. Rickey, Y. Zhu, Phys. Rev. A 64, 043807 (2001).ADSCrossRefGoogle Scholar
  48. 48.
    G.S. Agarwal, W. Harshawardhan, Phys. Rev. Lett. 77, 1039 (1996).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic and Information Engineering, Shandong University of Science and TechnologyQingdaoP.R. China
  2. 2.College of Electrical Engineering and Automation, Shandong University of Science and TechnologyQingdaoP.R. China
  3. 3.Institute of Quantum Optics, Center for Integrated Quantum Science and Technology (IQST), Ulm UniversityUlmGermany

Personalised recommendations