Advertisement

Modeling elastic properties of polystyrene through coarse-grained molecular dynamics simulations

  • Yaroslav M. Beltukov
  • Igor Gula
  • Alexander M. Samsonov
  • Ilia A. Solov’yovEmail author
Regular Article
  • 7 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

This paper presents an extended coarse-grained investigation into the elastic properties of polystyrene. In particular, we employ the well-known MARTINI force field and its modifications to achieve molecular dynamics simulations at the μs timescale, which take slow relaxation processes of polystyrene into account, such that the simulations permit analyzing the bulk modulus, the shear modulus, and the Poisson ratio. These elastic properties are used to gauge a promising protocol for calculation of various mechanical properties of a polymer system, based on the analysis of internal pressure in the system. Through modification of MARTINI force field parameters we elucidate that for various sets of polystyrene interactions the internal pressure of the system tends to saturate quickly enough to permit μs-long simulations sufficient to predict elastic moduli close to those values reported in the experiment. We demonstrate that the suggested approach yields significantly more accurate results than the alternative analysis of internal energy of the system, and the performed analysis reveals that significantly longer simulations are necessary for a similar analysis in that case.

Graphical abstract

References

  1. 1.
    P. Henrique, C. Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2009).Google Scholar
  2. 2.
    J.E. Mark, Polymer Data Handbook (Oxford University Press, 1999).Google Scholar
  3. 3.
    J. Mark, B. Erman, M. Roland, The Science and Technology of Rubber (Academic Press, 2013).Google Scholar
  4. 4.
    C.A. Harper, Handbook of Plastics, Elastomers, and Composites (McGraw-Hill, 2002).Google Scholar
  5. 5.
    J. Fawaz, V. Mittal, Synthesis of polymer nanocomposites: review of various techniques, in Synthesis techniques for polymer nanocomposites. 1st edn. (Wiley-VCH Verlag GmBH & Co., KGaA, Germany, 2015).Google Scholar
  6. 6.
    M. Šupová, G.S. Martynková, K. Barabaszová, Sci. Adv. Mater. 3, 1 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Nasir, A. Kausar, Polym. Plast. Technol. Eng. 54, 1819 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Armstrong, Eur. J. Phys. 36, 063001 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Zou, S. Wu, J. Shen, Chem. Rev. 108, 3893 (2008).CrossRefGoogle Scholar
  10. 10.
    I.G. Mathioudakis, G.G. Vogiatzis, C. Tzoumanekas, D.N. Theodorou, Soft Matter 12, 7585 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 8 (2012).CrossRefGoogle Scholar
  12. 12.
    D. Bracho, V.N. Dougnac, H. Palza, R. Quijada, J. Nanomater. 2012, 19 (2012).CrossRefGoogle Scholar
  13. 13.
    P. Musto, G. Ragosta, G. Scarinzi, L. Mascia, Polymer 45, 1697 (2004).CrossRefGoogle Scholar
  14. 14.
    M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polym. Int. 57, 292 (2008).CrossRefGoogle Scholar
  15. 15.
    W. Liu, X. Tian, P. Cui, Y. Li, K. Zheng, Y. Yang, J. Appl. Poly. Sci. 91, 1229 (2004).CrossRefGoogle Scholar
  16. 16.
    F. Yang, G.L. Nelson, J. Appl. Polym. Sci. 91, 3844 (2004).CrossRefGoogle Scholar
  17. 17.
    Z.S. Petrović, I. Javni, A. Waddon, G. Bánhegyi, J. Appl. Polym. Sci. 76, 133 (2000).CrossRefGoogle Scholar
  18. 18.
    P. Liu, Z. Su, Mater. Chem. Phys. 94, 412 (2005).CrossRefGoogle Scholar
  19. 19.
    H.S. Vaziri, I.A. Omaraei, M. Abadyan, M. Mortezaei, N. Yousefi, Mater. Design 32, 4537 (2011).CrossRefGoogle Scholar
  20. 20.
    C. Bartholome, E. Beyou, E. Bourgeat-Lami, P. Cassagnau, P. Chaumont, L. David, N. Zydowicz, Polymer 46, 9965 (2005).CrossRefGoogle Scholar
  21. 21.
    T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Böhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ghanbari, T.V.M. Ndoro, F. Leroy, M. Rahimi, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 572 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948).ADSCrossRefGoogle Scholar
  24. 24.
    M. Mooney, J. Appl. Phys. 11, 582 (1940).ADSCrossRefGoogle Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Elsevier Butterworth-Heinemann, 1959).Google Scholar
  26. 26.
    F.T. Wall, P.J. Flory, J. Chem. Phys. 19, 1435 (1951).ADSCrossRefGoogle Scholar
  27. 27.
    H.M. James, E. Guth, J. Chem. Phys. 11, 455 (1943).ADSCrossRefGoogle Scholar
  28. 28.
    S.F. Edwards, Proc. Phys. Soc. 91, 513 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Gaylord, Polym. Bull. 8, 325 (1982).Google Scholar
  30. 30.
    B. Mergell, R. Everaers, Macromolecules 34, 5675 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    M. Rubinstein, S. Panyukov, Macromolecules 35, 6670 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    C. Svaneborg, H.A. Karimi-Varzaneh, N. Hojdis, F. Fleck, R. Everaers, Phys. Rev. E 94, 032502 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    G.S. Grest, K. Kremer, Macromolecules 23, 4994 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    R. Everaers, K. Kremer, J. Mol. Model. 2, 293 (1996).CrossRefGoogle Scholar
  37. 37.
    C. Svaneborg, R. Everaers, G.S. Grest, J.G. Curro, Macromolecules 41, 4920 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys. Rev. E 57, 843 (1998).ADSCrossRefGoogle Scholar
  39. 39.
    V. Dubey, M. Han, W. Kopec, I.A. Solov’yov, K. Abe, H. Khandelia, Sci. Rep. 8, 12732 (2018).ADSCrossRefGoogle Scholar
  40. 40.
    S.M. Kimø, I. Friis, I.A. Solov’yov, Biophys. J. 115, 616 (2018).ADSCrossRefGoogle Scholar
  41. 41.
    D.R. Kattnig, C. Nielsen, I.A. Solov’yov, New J. Phys. 20, 083018 (2018).ADSCrossRefGoogle Scholar
  42. 42.
    V. Akimov, L.C.B. Olsen, S.V.F. Hansen, I. Barrio-Hernandez, M. Puglia, S.S. Jensen, I.A. Solov’yov, I. Kratchmarova, B. Blagoev, J. Proteome Res. 17, 296 (2018).CrossRefGoogle Scholar
  43. 43.
    I. Friis, E. Sjulstok, I.A. Solov’yov, Sci. Rep. 7, 13908 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    M. Klecka, C. Thybo, C. Macaubas, I. Solov’yov, J. Simard, I.M. Balboni, E. Fox, A. Voss, E.D. Mellins, K. Astakhova, Sci. Rep. 8, 5554 (2018).ADSCrossRefGoogle Scholar
  45. 45.
    K.A. Jepsen, I.A. Solov’yov, Eur. Phys. J. D 71, 155 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    X. Zou, W. Ma, I.A. Solov’yov, C. Chipot, K. Schulten, Nucleic Acids Res. 40, 2747 (2012).CrossRefGoogle Scholar
  47. 47.
    G. Rossi, L. Monticelli, S.R. Puisto, I. Vattulainen, T. Ala-Nissila, Soft Matter 7, 698 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    C. Ayyagari, D. Bedrov, G.D. Smith, Macromolecules 33, 6194 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    D.Y. Yoon, J. Chem. Phys. 98, 10037 (1993).ADSCrossRefGoogle Scholar
  50. 50.
    J.-L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3430 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 35, 9595 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    A.V. Lyulin, M.A.J. Michels, Macromolecules 35, 1463 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 36, 8574 (2003).ADSCrossRefGoogle Scholar
  54. 54.
    A.V. Lyulin, B. Vorselaars, M.A. Mazo, N.K. Balabaev, M.A.J. Michels, EPL 71, 618 (2005).ADSCrossRefGoogle Scholar
  55. 55.
    A.V. Lyulin, M.A.J. Michels, Phys. Rev. Lett. 99, 085504 (2007).ADSCrossRefGoogle Scholar
  56. 56.
    V.A. Harmandaris, K. Kremer, Macromolecules 42, 791 (2009).ADSCrossRefGoogle Scholar
  57. 57.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007).CrossRefGoogle Scholar
  58. 58.
    S.J. Marrink, D.P. Tieleman, Chem. Soc. Rev. 42, 6801 (2013).CrossRefGoogle Scholar
  59. 59.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. MacKerell Jr, J. Comput. Chem. 31, 671 (2010).Google Scholar
  60. 60.
    H. Höcker, G.J. Blake, P.J. Flory, Trans. Faraday Soc. 2251, 67 (1971).Google Scholar
  61. 61.
    P. Zoller, D.J. Walsh, Standard Pressure-Volume-Tempera- ture Data for Polymers (Technomic, Lancaster, 1995).Google Scholar
  62. 62.
    I. Mathioudakis, G.G. Vogiatzis, C. Tzoumanekas, D.N. Theodorou, J. Phys. Conf. Ser. 738, 012021 (2016).CrossRefGoogle Scholar
  63. 63.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005).CrossRefGoogle Scholar
  64. 64.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996).CrossRefGoogle Scholar
  65. 65.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993).ADSCrossRefGoogle Scholar
  66. 66.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012).CrossRefGoogle Scholar
  67. 67.
    T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, H. Yamakawa, Macromolecules 23, 290 (1990).ADSCrossRefGoogle Scholar
  68. 68.
    F. Birch, Phys. Rev. 71, 809 (1947).ADSCrossRefGoogle Scholar
  69. 69.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).ADSCrossRefGoogle Scholar
  70. 70.
    W.S. Slaughter, Linearized Theory of Elasticity (Birkhäuser, 2002).Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yaroslav M. Beltukov
    • 1
  • Igor Gula
    • 2
  • Alexander M. Samsonov
    • 1
  • Ilia A. Solov’yov
    • 1
    • 2
    • 3
    Email author
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Department of PhysicsChemistry, and Pharmacy, University of Southern DenmarkOdense MDenmark
  3. 3.Institute of Physics, Carl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations