Advertisement

Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study

  • Maicol Cipriani
  • Rachel M. Thorman
  • Christopher R. Brewer
  • Lisa McElwee-White
  • Oddur IngólfssonEmail author
Regular Article
  • 24 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

Here we present a combined theoretical and experimental study on dissociative ionization of (η3-allyl)Ru(CO)3Br, a potential precursor for focused electron beam induced deposition. Experimental appearance energies are determined by electron impact ionization and relative cross sections for selected fragmentation channels are presented from their respective thresholds to about 70 eV incident electron energy. Threshold energies for individual fragmentation channels are computed at the hybrid density functional and coupled cluster level of theory and compared to the respective experimental appearance energies.

Graphical abstract

Keywords

Atomic Physics 

Supplementary material

References

  1. 1.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).CrossRefGoogle Scholar
  2. 2.
    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    N. Silvis-Cividjian, C.W. Hagen, H.A. Leunissen, P. Kruit, Microelectron. Eng. 61–62, 693 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012).CrossRefGoogle Scholar
  10. 10.
    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    R.M. Thorman, T.P. R.K., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015).CrossRefGoogle Scholar
  12. 12.
    P.C. Hoyle, J.R.A. Cleaver, H. Ahmed, Appl. Phys. Lett. 64, 1448 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    T.P. R.K., S. Barth, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D 70, 163 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Thorman, I. Unlu, K.R. Johnson, R. Bjornsson, L. McElwee-White, D.H. Fairbrother, O. Ingólfsson, Phys. Chem. Chem. Phys. 20, 8 (2018).CrossRefGoogle Scholar
  15. 15.
    J. Kopyra, P. Maciejewska, J. Maljković, Beilstein J. Nanotechnol. 8, 2257 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018).CrossRefGoogle Scholar
  17. 17.
    J.A. Spencer, Y.C. Wu, L. McElwee-White, D.H. Fairbrother, J. Am. Chem. Soc. 138, 9172 (2016).CrossRefGoogle Scholar
  18. 18.
    T.P. R.K., I. Unlu, S. Barth, O. Ingólfsson, D.H. Fairbrother, J. Phys. Chem. C 122 (2017).Google Scholar
  19. 19.
    W.G. Garden, H. Lu, J.A. Spencer, D.H. Fairbrother, L. McElwee-White, MRS Commun. 8, 343 (2018).CrossRefGoogle Scholar
  20. 20.
    I. Unlu, J.A. Spencer, K.R. Johnson, R.M. Thorman, O. Ingólfsson, L. McElwee-White, D.H. Fairbrother, Phys. Chem. Chem. Phys. 20, 7862 (2018).CrossRefGoogle Scholar
  21. 21.
    T.P. R.K., P. Weorich, L. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018).CrossRefGoogle Scholar
  22. 22.
    R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson, Phys. Chem. Chem. Phys. 19, 13264 (2017).CrossRefGoogle Scholar
  23. 23.
    R.M. Thorman, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D. 70, 164 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Spencer, J. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Jurczyk, C.R. Brewer, O.M. Hawkins, M.N. Polyakov, C. Kapusta, L. McElwee-White, I. Utke, ACS Appl. Mater. Interfaces 11, 28164 (2019).CrossRefGoogle Scholar
  26. 26.
    J.H. Noh, M.G. Stanford, B.B. Lewis, J.D. Fowlkes, H. Plank, P.D. Rack, Appl. Phys. A 117, 1705 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    V. Scheuer, H. Koops, T. Tschudi, Microelectron. Eng. 5, 423 (1986).CrossRefGoogle Scholar
  28. 28.
    C.M. Gonzalez, W. Slingenbergh, R. Timilsina, J.-H. Noh, M.G. Stanford, B.B. Lewis, K.L. Klein, T. Liang, J.D. Fowlkes, P.D. Rack, Proc. SPIE 9048, 90480M (2014).CrossRefGoogle Scholar
  29. 29.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    C. Riplinger, F. Neese, J. Chem. Phys. 138, 034106 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 139, 134101 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    C. Riplinger, P. Pinski, U. Becker, E. Valeev, F. Neese, J Chem Phys. 144, 024109 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012).CrossRefGoogle Scholar
  35. 35.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).CrossRefGoogle Scholar
  36. 36.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011).CrossRefGoogle Scholar
  38. 38.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986).ADSCrossRefGoogle Scholar
  40. 40.
    M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006).CrossRefGoogle Scholar
  41. 41.
    M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007).CrossRefGoogle Scholar
  42. 42.
    M. Buhl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008).CrossRefGoogle Scholar
  43. 43.
    M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006).CrossRefGoogle Scholar
  44. 44.
    C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009).CrossRefGoogle Scholar
  45. 45.
    T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014).CrossRefGoogle Scholar
  46. 46.
    A. Hellweg, C. Hattig, S. Hofener, W. Klopper, Theor. Chem. Acc. 117, 587 (2007).CrossRefGoogle Scholar
  47. 47.
    F. Neese, J. Am. Chem. Soc. 128, 10213 (2006).CrossRefGoogle Scholar
  48. 48.
    E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D. 68, 121 (2014).ADSCrossRefGoogle Scholar
  49. 49.
    R.C. Wetzel, F.A. Baiocchi, T.R. Hayes, R.S. Freund, Phys. Rev. A 35, 559 (1987).ADSCrossRefGoogle Scholar
  50. 50.
    G.H. Wannier, Phys. Rev. 90, 817 (1953).ADSCrossRefGoogle Scholar
  51. 51.
    K.R. Johnson, A.P. Rodriguez, C.R. Brewer, J.A. Brannaka, Z. Shi, J. Yang, B. Salazar, L. McElwee-White, A.V. Walker, J. Chem. Phys. 146, 052816 (2017).ADSCrossRefGoogle Scholar
  52. 52.
    G. Sbrana, G. Braca, F. Piacenti, P. Pino, J. Organomet. Chem. 13, 240 (1968).CrossRefGoogle Scholar
  53. 53.
    G.A. Junk, H.J. Svec, Z. Naturforsch, B 23, 1 (1968).Google Scholar
  54. 54.
    M.I. Bruce, Adv. Organomet. Chem. 6, 273 (1968).CrossRefGoogle Scholar
  55. 55.
    R.B. King, J. Am. Chem. Soc. 90, 1417 (1968).CrossRefGoogle Scholar
  56. 56.
    O. Ingólfsson, F. Weik, E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996).ADSCrossRefGoogle Scholar
  57. 57.
    J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016).CrossRefGoogle Scholar
  58. 58.
    M. Zlatar, M. Allan, J. Fedor, J. Phys. Chem. C 120, 10667 (2016).CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maicol Cipriani
    • 1
  • Rachel M. Thorman
    • 2
  • Christopher R. Brewer
    • 3
  • Lisa McElwee-White
    • 3
  • Oddur Ingólfsson
    • 1
    Email author
  1. 1.Science Institute and Department of Chemistry University of IcelandReykjavíkIceland
  2. 2.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations