Advertisement

Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study

  • 48 Accesses

Abstract

Here we present a combined theoretical and experimental study on dissociative ionization of (η3-allyl)Ru(CO)3Br, a potential precursor for focused electron beam induced deposition. Experimental appearance energies are determined by electron impact ionization and relative cross sections for selected fragmentation channels are presented from their respective thresholds to about 70 eV incident electron energy. Threshold energies for individual fragmentation channels are computed at the hybrid density functional and coupled cluster level of theory and compared to the respective experimental appearance energies.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).

  2. 2.

    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008).

  3. 3.

    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012).

  4. 4.

    J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972).

  5. 5.

    A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995).

  6. 6.

    N. Silvis-Cividjian, C.W. Hagen, H.A. Leunissen, P. Kruit, Microelectron. Eng. 61–62, 693 (2002).

  7. 7.

    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012).

  8. 8.

    S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013).

  9. 9.

    O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012).

  10. 10.

    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012).

  11. 11.

    R.M. Thorman, T.P. R.K., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015).

  12. 12.

    P.C. Hoyle, J.R.A. Cleaver, H. Ahmed, Appl. Phys. Lett. 64, 1448 (1994).

  13. 13.

    T.P. R.K., S. Barth, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D 70, 163 (2016).

  14. 14.

    R.M. Thorman, I. Unlu, K.R. Johnson, R. Bjornsson, L. McElwee-White, D.H. Fairbrother, O. Ingólfsson, Phys. Chem. Chem. Phys. 20, 8 (2018).

  15. 15.

    J. Kopyra, P. Maciejewska, J. Maljković, Beilstein J. Nanotechnol. 8, 2257 (2017).

  16. 16.

    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018).

  17. 17.

    J.A. Spencer, Y.C. Wu, L. McElwee-White, D.H. Fairbrother, J. Am. Chem. Soc. 138, 9172 (2016).

  18. 18.

    T.P. R.K., I. Unlu, S. Barth, O. Ingólfsson, D.H. Fairbrother, J. Phys. Chem. C 122 (2017).

  19. 19.

    W.G. Garden, H. Lu, J.A. Spencer, D.H. Fairbrother, L. McElwee-White, MRS Commun. 8, 343 (2018).

  20. 20.

    I. Unlu, J.A. Spencer, K.R. Johnson, R.M. Thorman, O. Ingólfsson, L. McElwee-White, D.H. Fairbrother, Phys. Chem. Chem. Phys. 20, 7862 (2018).

  21. 21.

    T.P. R.K., P. Weorich, L. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018).

  22. 22.

    R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson, Phys. Chem. Chem. Phys. 19, 13264 (2017).

  23. 23.

    R.M. Thorman, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D. 70, 164 (2016).

  24. 24.

    J.A. Spencer, J. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015).

  25. 25.

    J. Jurczyk, C.R. Brewer, O.M. Hawkins, M.N. Polyakov, C. Kapusta, L. McElwee-White, I. Utke, ACS Appl. Mater. Interfaces 11, 28164 (2019).

  26. 26.

    J.H. Noh, M.G. Stanford, B.B. Lewis, J.D. Fowlkes, H. Plank, P.D. Rack, Appl. Phys. A 117, 1705 (2014).

  27. 27.

    V. Scheuer, H. Koops, T. Tschudi, Microelectron. Eng. 5, 423 (1986).

  28. 28.

    C.M. Gonzalez, W. Slingenbergh, R. Timilsina, J.-H. Noh, M.G. Stanford, B.B. Lewis, K.L. Klein, T. Liang, J.D. Fowlkes, P.D. Rack, Proc. SPIE 9048, 90480M (2014).

  29. 29.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  30. 30.

    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999).

  31. 31.

    C. Riplinger, F. Neese, J. Chem. Phys. 138, 034106 (2013).

  32. 32.

    C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 139, 134101 (2013).

  33. 33.

    C. Riplinger, P. Pinski, U. Becker, E. Valeev, F. Neese, J Chem Phys. 144, 024109 (2016).

  34. 34.

    F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012).

  35. 35.

    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

  36. 36.

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010).

  37. 37.

    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

  38. 38.

    A.D. Becke, Phys. Rev. A 38, 3098 (1988).

  39. 39.

    J.P. Perdew, Phys. Rev. B 33, 8822 (1986).

  40. 40.

    M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006).

  41. 41.

    M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007).

  42. 42.

    M. Buhl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008).

  43. 43.

    M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006).

  44. 44.

    C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009).

  45. 45.

    T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014).

  46. 46.

    A. Hellweg, C. Hattig, S. Hofener, W. Klopper, Theor. Chem. Acc. 117, 587 (2007).

  47. 47.

    F. Neese, J. Am. Chem. Soc. 128, 10213 (2006).

  48. 48.

    E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D. 68, 121 (2014).

  49. 49.

    R.C. Wetzel, F.A. Baiocchi, T.R. Hayes, R.S. Freund, Phys. Rev. A 35, 559 (1987).

  50. 50.

    G.H. Wannier, Phys. Rev. 90, 817 (1953).

  51. 51.

    K.R. Johnson, A.P. Rodriguez, C.R. Brewer, J.A. Brannaka, Z. Shi, J. Yang, B. Salazar, L. McElwee-White, A.V. Walker, J. Chem. Phys. 146, 052816 (2017).

  52. 52.

    G. Sbrana, G. Braca, F. Piacenti, P. Pino, J. Organomet. Chem. 13, 240 (1968).

  53. 53.

    G.A. Junk, H.J. Svec, Z. Naturforsch, B 23, 1 (1968).

  54. 54.

    M.I. Bruce, Adv. Organomet. Chem. 6, 273 (1968).

  55. 55.

    R.B. King, J. Am. Chem. Soc. 90, 1417 (1968).

  56. 56.

    O. Ingólfsson, F. Weik, E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996).

  57. 57.

    J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016).

  58. 58.

    M. Zlatar, M. Allan, J. Fedor, J. Phys. Chem. C 120, 10667 (2016).

Download references

Author information

Correspondence to Oddur Ingólfsson.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2019-100151-9.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cipriani, M., Thorman, R.M., Brewer, C.R. et al. Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study. Eur. Phys. J. D 73, 227 (2019). https://doi.org/10.1140/epjd/e2019-100151-9

Download citation

Keywords

  • Atomic Physics