Advertisement

Positron binding to hydrocarbon molecules: calculation using the positron–electron correlation polarization potential

  • Yutaro Sugiura
  • Toshiyuki TakayanagiEmail author
  • Yukiumi Kita
  • Masanori Tachikawa
Regular Article Molecular Physics and Chemical Physics
  • 18 Downloads

Abstract

Positron binding energies of naphthalene and alkanes (CnH2n+2 with n = 3 − 16) are calculated using the correlation polarization potential approach, where the short-range positron–electron correlation potential is modeled by the density-functional expression taken from a homogenous electron gas model. In the case of naphthalene, the calculated positron binding energy is found to reasonably agree with the experimental measurement. In the case of CnH2n+2 with the linear all-trans conformation we found positive positron binding energies for n ≥ 8 while the positron is not bound for n ≤ 7. This result cannot reproduce the previous experimental study, where the positron was bound for all alkanes with 3 ≤n ≤ 16. In addition, our calculated positron binding energies for n ≥ 9 are much larger than the experimental values although the generalized gradient approximation could improve the calculated values. We also investigated the conformer dependence of the positron binding energy for C16H34 and found that the positron binding energies significantly depend on the conformational structure; hairpin-like and crown-like structures generally have large positron binding energies, while single and multiple gauche structures have smaller binding energies.

Graphical abstract

References

  1. 1.
    G.F. Gribakin, J.A. Young, C.M. Surko, Rev. Mod. Phys. 82, 2557 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    L.D. Barnes, S.J. Gilbert, C.M. Surko, Phys. Rev. A 67, 032706 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    L.D. Barnes, J.A. Young, C.M. Surko, Phys. Rev. A 74, 012706 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Young, C.M. Surko, Phys. Rev. A 77, 052704 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Young, C.M. Surko, Phys. Rev. A 78, 032702 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Young, C.M. Surko, Phys. Status Solidi C 6, 2265(2009)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Danielson, J.A. Young, C.M. Surko, J. Phys. B: At., Mol. Opt. Phys. 42, 235203 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M. Surko, Phys. Rev. Lett. 109, 113201 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M. Surko, Phys. Rev. A 85, 022709 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A.C.L. Jones, J.R. Danielson, J.J. Grosselin, M.R. Nastin, C.M. Surko, New J. Phys. 14, 015006 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M.R. Natisin, J.R. Danielson, G.F. Gribakin, A.R. Swann, C.M. Surko, Phys. Rev. Lett. 119, 113402 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M. Tachikawa, K. Mori, K. Suzuki, K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Tachikawa, K. Mori, H. Nakai, K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    S.L. Saito, F. Sasaki, J. Chem. Phys. 102, 8040 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M.W.J. Bromley, J. Mitroy, Phys. Rev. A 65, 062505 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    K. Strasburger, J. Chem. Phys. 114, 615 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mella, G. Morosi, J. Chem. Phys. 113, 6154 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    J. Mitroy, Phys. Rev. A 73, 054502 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Schrader, T. Yoshida, K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    N. Jiang, D.M. Schrader, J. Chem. Phys. 109, 9430 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    D. Bressanini, M. Mella, G. Morosi, J. Chem. Phys. 108, 4756 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    M. Mella, M. Casalengo, G. Morosi, J. Chem. Phys. 117, 1450 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    G.F. Gribakin, C.M.R. Lee, Eur. Phys. J. D 51, 51 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Swann, G.F. Gribakin, J. Chem. Phys. 149, 244305 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    G.F. Gribakin, A.R. Swann, J. Phys. B: At., Mol. Opt. Phys. 48, 215101 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    F.A. Gianturco, T. Mukherjee, P. Paioletti, Phys. Rev. A 56, 3638 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    F.A. Gianturco, T. Mukherjee, A. Occhigrossi, Phys. Rev. A 64, 032715 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    T. Nishimura, F.A. Gianturco, Phys. Rev. A 65, 062703 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    T. Nishimura, F.A. Gianturco, Phys. Rev. Lett. 90, 183201 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    F.A. Gianturco, T.L. Gibson, P. Nichols, R.R. Lucchese, T. Nishimura, Radiat. Phys. Chem. 68, 673 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    T. Nishimura, F.A. Gianturco, J. Phys. B: At., Mol. Opt. Phys. 37, 215 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    T. Nishimura, F.A. Gianturco, Eur. Phys. J. D 33, 221 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    T. Nishimura, F.A. Gianturco, Phys. Rev. A 72, 022706 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    F.A. Gianturco, P. Nichols, T.L. Gibson, R.R. Lucchese, Phys. Rev. A 72, 032724 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    J. Franz, F.A. Gianturco, Eur. Phys. J. D 68, 279 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    F. Carelli, F.A. Gianturco, J. Franz, M. Satta, Eur. Phys. J. D 69, 143 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    K. Fedus, J. Franz, G.P. Karwasz, Phys. Rev. A 91, 062701 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    F.A. Gianturco, R.R. Lucchese, Phys. Rev. A 60, 4567 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    R. Carey, F.A. Gianturco, Phys. Rev. A 78, 012706 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    E. Boroński, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    J. Arponen, E. Pajanne, Ann. Phys. 121, 343 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    A. Jain, Phys. Rev. A 41, 2437 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    P.A. Sterne, J.H. Kaiser, Phys. Rev. B 43, 13892 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53, 16201 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    J. Kuriplach, B. Barbiellini, Phys. Rev. B 89, 155111 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    B. Barbiellini-Amidei, Phys. Lett. A 134, 328 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian09: RevD.01 (Gaussian Inc., Wallingford, CT, USA, 2009)Google Scholar
  50. 50.
    K.J. Miller, J. Am. Chem. Soc. 112, 8533 (1990)CrossRefGoogle Scholar
  51. 51.
    J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)ADSCrossRefGoogle Scholar
  52. 52.
    M.D. Feit, J.A. Fleck Jr, A. Steiger, J. Comput. Phys. 47, 412 (1982)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    R. Kosloff, H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986)ADSCrossRefGoogle Scholar
  54. 54.
    N. Balakrishnan, C. Kalyanaraman, N. Sathyamurthy, Phys. Rep. 280, 79 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    G. Nyman, H.-G. Yu, Rep. Prog. Phys. 63, 1001 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    S. Heitz, D. Weidauer, B. Rosenow, A. Hese, J. Chem. Phys. 96, 976 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    A.R. Swann, G.F. Gribakin, https://arXiv:1904.12491 (2019)
  58. 58.
    L.L. Thomas, T.J. Christakis, W.L. Jorgensen, J. Phys. Chem. B 110, 21198 (2006)CrossRefGoogle Scholar
  59. 59.
    D. Gruzman, A. Karton, J.M.L. Martin, J. Phys. Chem. A 113, 11974 (2009)CrossRefGoogle Scholar
  60. 60.
    N.O.B. Lüttschwager, T.N. Wassermann, R.A. Mata, M.A. Suhm, Angew. Chem. Int. Ed. 52, 463 (2013)CrossRefGoogle Scholar
  61. 61.
    J.N. Byrd, R.J. Bartlett, J.A. Montgomery Jr, J. Phys. Chem. A 118, 1706 (2014)CrossRefGoogle Scholar
  62. 62.
    G.F. Gribakin, C.M.R. Lee, Phys. Rev. Lett. 97, 193201 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Y. Sugiura, K. Suzuki, S. Koido, T. Takayanagi, Y. Kita, M. Tachikawa, Comput. Theor. Chem. 1147, 1 (2019)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySaitama UniversitySaitama City, SaitamaJapan
  2. 2.Graduate School of Nanobioscience, Yokohama City UniversityYokohama, KanagawaJapan

Personalised recommendations