Electron capture and excitation in H+ − Li+ collisions

  • Dragan JakimovskiEmail author
  • Ratko K. Janev
Regualr Article


The processes of state-selective electron capture and excitation in proton collisions with Li+(1s2 1S) and Li+(1s2s 1,3S) ions are studied by using the two-center atomic orbital close-coupling (TC-AOCC) methods in the energy range 2.5–800 keV. The interaction of the active electron with the Li2+ ion core is represented by model potentials that reproduce the energies of excited singlet and triplet states of Li+ with accuracy better than 2%. The expansion basis in the coupled state calculations includes all states with n ≤ 8 (in total 120 states) centered on each of the colliding centers. Total and state-selective electron capture and excitation cross sections to final states with n ≤ 4 are presented. The physical mechanisms involved in the dynamics of considered processes are discussed in detail. The reported cross sections should be useful in the kinetic modeling and diagnostics of fusion reactor plasmas with liquid lithium divertors.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    R. Majeski, M. Boaz, D. Hoffman, B. Jones, R. Kaita, H. Kugel, T. Munsat, J. Spaleta, V. Soukhanovskii, J. Timberlake, L. Zakharov, J. Nucl. Mater. 313–316, 625 (2003)CrossRefGoogle Scholar
  2. 2.
    M.L. Apicella, G. Mazzitelli, V.P. Ridolfini, V. Lazarev, A. Alekseyev, A. Vertkov, R. Zagorski, FTU Team, J. Nucl. Mater. 363–365, 1346 (2007)CrossRefGoogle Scholar
  3. 3.
    R.B. Gomes, C. Silva, H. Fernandes, P. Duarte, I. Nedzelskiy, O. Lielausis, A. Klyukin, E. Platacis, J. Nucl. Mater. 415, S989 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    V.A. Evtikhin, I.E. Lyublinski, A.V. Vertkov, S.V. Mirnov, V.B. Lazarev, N.P. Petrova, S.M. Sotnikov, A.P. Chernobai, B.I. Khripunov, V.B. Petrov, D.Y. Prokhorov, V.M. Korzhavin, Plasma Phys. Controlled Fusion 44, 955 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Whyte, T.E. Evans, P.C. Wong, W.P. West, R. Bastasz, J.P. Allain, J.N. Brooks, Fusion Eng. Des. 72, 133 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Kaita, R. Majeski, T. Gray, H. Kugel, D. Mansfield, J. Spaleta, J. Timberlake, L. Zakharov, R. Doerner, T. Lynch, R. Maingi, Phys. Plasmas 14, 056111 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H.W. Kugel, J.P. Allain, M.G. Bell, R.E. Bell, A. Diallo, R. Ellis, S.P. Gerhardt, B. Heim, M.A. Jaworski, R. Kaita, J. Kallman, Fusion Eng. Des. 87, 1724 (2012)CrossRefGoogle Scholar
  8. 8.
    M.A. Javorski, T. Abrams, J.P. Allain, M.G. Bell, R.E. Bell, A. Diallo, T.K. Gray, S.P. Gerhardt, R. Kaita, H.W. Kugel, B.P. LeBlanc, Nucl. Fusion 53, 083032 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    F.L. Tabares, Plasma Phys. Controlled Fusion 58, 014014 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    N. Klimov, V. Podkovirov, A. Zhitlukhin, D. Kovalenko, J. Linke, G. Pintsuk, I. Landman, S. Pestchanyi, B. Bazylev, G. Janeschitz, A. Loarte, J. Nucl. Mater. 415, S59 (2011)CrossRefGoogle Scholar
  11. 11.
    F. Genko, A. Hassanein, Fusion Eng. Des. 89, 335 (2014)CrossRefGoogle Scholar
  12. 12.
    A.A. Pshenov, A.A. Eksaeva, S.I. Krasheninnikov, E.D. Marenkov, Phys. Procedia 71, 14 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    G.F. Bogdanov, A.N. Karkhov, Ya.A. Kuchryaev, Atomnaya Energiya (USSR) 19, 1316 (1965)Google Scholar
  14. 14.
    E.C. Sewell, G.C. Ahgel, K.F. Dunn, H.B. Gilbody, J. Phys. B: At., Mol. Phys. 13, 2269 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    K.E. Banyard, G.W. Shirtcliffe, , j. Phys. B: At., Mol. Phys. 12, 1316 (1979)CrossRefGoogle Scholar
  16. 16.
    A.L. Ford, J.F. Reading, R.L. Becker, J. Phys. B: At., Mol. Phys. 15, 3257 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    Y.R. Kuang, J. Phys. B: At., Mol. Opt. Phys. 24, 1645 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    B.H. Bransden, M.R.C. McDowell, Charge Exchange and Theory of Ion-atom Collisions (Clarendon, Oxford, 1992)Google Scholar
  20. 20.
    Yu. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (2008), Scholar
  21. 21.
    L.L. Yan, L. Liu, J.G. Wang, R.K. Janev, J.R. Buenker, Eur. Phys. J. D 69, 26 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J. Kuang, V.D. Lin, J. Phys. B: At., Mol. Opt. Phys. 29, 5443 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    J. Kuang, V.D. Lin, J. Phys. B: At., Mol. Opt. Phys. 30, 101 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    I. Bray, A.T. Stelbovics, Phys. Rev. A 46, 6995 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    I. Bray, A.T. Stelbovics, Phys. Rev. A 66, 036701 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Kadyrov, I. Bray, A.T. Stelbovics, Phys. Rev. A 73, 012710 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    I.B. Abdurakhmanov, A.S. Kadyrov, I. Bray, J. Phys. B: At., Mol. Opt. Phys. 49, 03LT01 (2016)CrossRefGoogle Scholar
  28. 28.
    S.K. Avazbaev, A.S. Kadyrov, I.B. Abdurakhmanov, D.V. Fursa, I. Bray, Phys. Rev. A 93, 022710 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    D.R. Schultz, C.O. Reinhold, P.S. Krstić, Phys. Rev. Lett. 78, 2720 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    M.I. Chibisov, R.K. Janev, X. Urbain, F. Brouillard, J. Phys. B: At., Mol. Opt. Phys. 34, 2631 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSts Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Macedonian Academy of Sciences and ArtsSkopjeMacedonia

Personalised recommendations