Electron capture, excitation and ionization in H+–Be+ collisions

  • Ling LiuEmail author
  • Chunhua Liu
  • Jianguo Wang
  • Ratko Janev
Regular Article


State-selective single electron capture, excitation and ionization processes in proton collisions with Be+(1s22s) and Be+(1s22p) ions are studied by using the quantum-mechanical molecular orbital (QMOCC) and the two-center atomic orbital close-coupling (TC-AOCC) methods in the combined energy range 0.01–300 keV/u. In the QMOCC calculations six 2Σ+ and three 2Π states are included in the expansion basis. The TC-AOCC expansion basis includes 35 discrete states centered on the proton and 182 states on Be2+ out of which 88 are continuum pseudostates. The atomic states on Be2+ are generated by a one-electron model potential for the electron interaction with Be2+ ion core that reproduces the exact energies with accuracy better than 0.5%. Total and state-selective electron capture and excitation cross sections to final states with n ≤ 4 are presented. The sum of the cross sections for the transitions to continuum pseudostates (ionization cross section) is also reported for both initial target states. The physical mechanisms involved in the dynamics of considered processes are discussed in detail at both low and high energies. The reported cross sections should be useful in the kinetic modeling and diagnostics of edge plasmas in present magnetic fusion experiments, as well as in the current ITER design, in which beryllium is used as first wall material.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    M. Bessendorf-Weberpals, J. Hackman, J. Ulenbusch, J. Nucl. Mater. 145, 849 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    G. Duxbury, M.F. Stamp, H.P. Summers, Plasma Phys. Controlled Fusion 40, 361 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wesson, Report JET-R(99)13, 1999Google Scholar
  4. 4.
    K. Ikeda, in Progress in the ITER Physics Basis, Nuclear Fusion (2019), Vol. 47, Issue 6Google Scholar
  5. 5.
    G. Federici, Phys. Scr. T124, 1 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. Brezinsek, JET-EFDA contributors, J. Nucl. Mater. 463, 11 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I. Bykov, H. Bergsaker, G. Possnert, K. Heinola, J. Miettunen, M. Groth, P. Petersson, A. Widdowson, J. Likonen, J. Nucl. Mater. 463, 773 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Brezinsek, A. Widdowson, M. Mayer, V. Philipps, P. Baron-Wiechec, J.W. Coenen, K. Heinola, A. Huber, J. Likonen, P. Petersson, M. Rubel, Nucl. Fusion 55, 063021 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N. Klimov, V. Podkovirov, A. Zhitlukhin, D. Kovalenko, J. Linke, G. Pintsuk, I. Landman, S. Pestchanyi, B. Bazylev, G. Janeschitz, A. Loarte, J. Nucl. Mater. 415, S59 (2011)CrossRefGoogle Scholar
  10. 10.
    F. Genko, A. Hassanein, Fusion Eng. Des. 89, 335 (2014)CrossRefGoogle Scholar
  11. 11.
    A.A. Pshenov, A.A. Eksaeva, S.I. Krasheninnikov, E.D. Marenkov, Phys. Procedia 71, 14 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    D.R. Bates, H.C. Johnston, I. Stewart, Proc. Phys. Soc. 84, 517 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    D.C.F. Crothers, N.R. Todd, J. Phys. B: At., Mol. Phys. 11, L663 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    B.H. Bransden, Nucl. Instrum. Methods Phys. Res. B 24/25, 377 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    B. Zygelman, D.L. Cooper, M.J. Ford, A. Dalgarno, J. Gerratt, M. Raimondi, Phys. Rev. A 46, 3846 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kimura, N.F. Lane, Adv. At. Mol. Opt. Phys. 26, 79 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    B.R. Johnson, J. Comput. Phys. 13, 445 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Bacchus-Montabonel, P. Ceyzeriat, Phys. Rev. A 58, 1162 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    L.F. Errea, L. Méndez, A. Riera, J. Phys. B: At., Mol. Phys. 15, 101 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    T.G. Heil, S.E. Butler, A. Dalgarno, Phys. Rev. A 23, 1100 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    R.J. Buenker, R.A. Phillips, J. Mol. Struct.: THEOCHEM 123, 291 (1985)CrossRefGoogle Scholar
  22. 22.
    S. Krebs, R.J. Buenker, J. Chem. Phys. 103, 5613 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    L.F. Pacios, P.A. Christiansen, J. Chem. Phys. 82, 2664 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    Yu Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, Atomic Spectra Database (version 3.1.5) (2008),
  26. 26.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    B.H. Bransden, M.R.C. McDowell, Charge Exchange and Theory of Ion-Atom Collisions (Clarendon, Oxford, 1992)Google Scholar
  28. 28.
    C.H. Liu, J.G. Wang, R.K. Janev, Phys. Rev. A 85, 042719 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    D.R. Schultz, C.O. Reinhold, P.S. Krstic, Phys. Rev. Lett. 78, 2720 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    M.I. Chibisov, R.K. Janev, X. Urbain, F. Brouillard, J. Phys. B: At., Mol. Opt. Phys. 34, 2631 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ling Liu
    • 1
    Email author
  • Chunhua Liu
    • 2
  • Jianguo Wang
    • 1
  • Ratko Janev
    • 3
  1. 1.Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.School of Physics, Southeast UniversityNanjingP.R. China
  3. 3.Macedonian Academy of Sciences and ArtsSkopjeMacedonia

Personalised recommendations