Material dependence on the mean charge state of light ions in titanium, zirconium and copper

  • 28 Accesses


Charge cycling cross sections of lithium and helium ions are measured for atomic metal films of titanium, zirconium and copper. The material dependence of the measured charge state fractions is investigated and compared with the material density, electron density, mean ionization potential and Fermi level. The experimental data quantitatively agrees with previously documented charge exchange cross sections for thin films and shows the expected increase in the fraction of higher charge states with increasing velocity, over the ion velocity range considered. There is an observable material dependence of the charge state fraction. The measured charge state distributions are expressed as a mean charge state and compared with various mean and effective charge formalisms. The effective charge models are demonstrated to be inadequate representations of the measured mean charge states for the ions and films probed in this study.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    N.J. Carron, An Introduction to the Passage of Energetic Particles Through Matter (CRC Press, Boca Raton, 2006)

  2. 2.

    Y. Hatano, Y. Katsumura, A. Mozumder, Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces (CRC Press, Boca Raton, 2010)

  3. 3.

    G.S. Was, Fundamentals of Radiation Material Science (Springer, New York, 2007)

  4. 4.

    G.G. Gomez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer, New York, 2012)

  5. 5.

    R. Bimbot, H. Geissel, H. Paul, A. Schinner, P. Sigmund, Stopping of Ions Heavier the Helium, ICRU Report 73, 2005

  6. 6.

    C. Schmitt, J.A. LaVerne, D. Robertson, M. Bowers, W. Lu, P. Collon, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 721 (2011)

  7. 7.

    J.A. LaVerne, R.H. Schuler, J. Phys. Chem. 98, 4043 (1994)

  8. 8.

    S.M. Pimblott, J.A. LaVerne, A. Mozumder, N.J.B. Green, J. Phys. Chem. 94, 488 (1990)

  9. 9.

    R.K. Janev, B.H. Bransden, J.W. Gallagher, J. Phys. Chem. Ref. Data 12, 829 (1983)

  10. 10.

    F. Ballarini, D. Alloni, A. Facoetti, A. Ottolenghi, New J. Phys. 10, 075008 (2008)

  11. 11.

    C. Ganguly, Advances in Zirconium Technology for Nuclear Reactor Application (Bhabha Atomic Research Centre, Mumbai, 2002)

  12. 12.

    J.B. Marion, F.C. Young, Nuclear Reactor Analysis Graphs and Tables (John Wiley and Sons, Hoboken, 1968)

  13. 13.

    J.C. Armstrong, J.V. Mullendore, W.R. Harris, J.B. Marion, Proc. Phys. Soc. London 86, 1283 (1965)

  14. 14.

    C.S. Zaidins, Physics, Mathematics, and Astronomy (California Institute of Technology, Los Angeles, 1967)

  15. 15.

    L.C. Northcliffe, Phys. Rev. 120, 1744 (1960)

  16. 16.

    T.E. Pierce, M. Blann, Phys. Rev. 173, 390 (1968)

  17. 17.

    G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. Sect. B 175, 125 (2001)

  18. 18.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, The Stopping and Range of Ions in Matter (Pergamon, New York, 2008)

  19. 19.

    P. Sigmund, L. Glazov, Nucl. Instrum. Methods Phys. Res. Sect. B 136, 47 (1998)

  20. 20.

    LeBow Co., (2014)

  21. 21.

    W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982)

  22. 22.

    P. Sigmund, Ion Beam Science: Solved and Unsolved Problems, Part I and II (Royal Danish Academy of Sciences and Letters, Copenhagen, 2006)

  23. 23.

    K. Shima, N. Kuno, M. Yamanouchi, H. Tawara, Atom. Nucl. Data Tables 51, 173 (1992)

  24. 24.

    K. Shima, T. Mikumo, H. Tawara, Atom. Nucl. Data Tables 34, 357 (1986)

  25. 25.

    C. Schmitt, University of Notre Dame, 2010

  26. 26.

    A. Itoh, H. Tsuchida, T. Majima, A. Yogo, A. Ogawa, Nucl. Instrum. Methods Phys. Res. Sect. B 159, 22 (1999)

  27. 27.

    H.D. Betz, L. Grodzins, Phys. Rev. Lett. 25, 211 (1970)

  28. 28.

    D. Lide, Handbook of Chemistry and Physics. 88th edn (CRC Press, Boca Raton, 2008)

  29. 29.

    G.H. Kinchin, Proc. R. Soc. London Ser. A 217, 9 (1953)

  30. 30.

    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, 1976)

  31. 31.

    A. Kramida, Y. Ralchenko, J. Reader, N.A. Team, Atomic Spectra Database (National Institute of Standards and Technology, Gaithersburg, MD, 2014),

Download references

Author information

Correspondence to Jay A. LaVerne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schofield, J., LaVerne, J.A., Robertson, D. et al. Material dependence on the mean charge state of light ions in titanium, zirconium and copper. Eur. Phys. J. D 73, 211 (2019) doi:10.1140/epjd/e2019-100144-8

Download citation


  • Molecular Physics and Chemical Physics