Electron-impact cross sections of X2CO (X = H, F, Cl, Br) from ionization threshold to 5 keV

  • Anand BharadvajaEmail author
  • Savinder Kaur
  • K. L. Baluja
Regular Article


Various electron-impact cross sections are obtained for halogenated derivatives of formaldehyde like H2CO, F2CO, Cl2CO, Br2CO using the Single Centre Expansion method. The molecular wavefunction of the targets are obtained from the multi-centre expansion of the Gaussian-type orbitals within the single determinant Hartree Fock self consistent field scheme. The effects due to static, correlation-polarization and exchange included to model the electron-molecule interactions are approximated by their local nature. The correlation-polarization potential includes short and long range polarization electron dynamical effects. The dipole and higher order multipole terms are considered in the multipole expansion of the target at centre of mass. The coupled scattering equations are solved using Volterra integral form to obtain the elastic cross sections. The inelastic contributions to collision process are approximated by ionization cross sections. The two cross sections are added to obtain the total cross sections from ionization threshold to 5 keV. The collision data generated from this approach are consistent with the available results. The study of scattering from homologous series has helped in proposing a simple empirical formula to estimate the total cross sections for any member of the homologous family.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    W.M. Ariyasinghe, Radiat. Phys. Chem. 68, 79 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    C. Szmytkowski, P. Mozejko, A. Krzysztofowicz, Radiat. Phys. Chem. 68, 307 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J. Tennyson, Phys. Rep. 491, 296 (2010)CrossRefGoogle Scholar
  4. 4.
    S.P. Khare, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules (Springer, US, 2001)Google Scholar
  5. 5.
    K.N. Joshipura, N. Mason, Atomic-Molecular Ionization by Electron Scattering: Theory and Applications (Cambridge University Press, 2019)Google Scholar
  6. 6.
    A. Jain, K.L. Baluja, Phys. Rev. A 45, 202 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    F.A. Gianturco, V. Di Martino, A. Jain, Il Nuovo Cimento D 14, 411 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    F.A. Gianturco, D.G. Thompson, A.K. Jain, in Computational Methods for Electron Molecule Collisions, edited by*.xmlW.M. Huo, F.A. Gianturco(Plenum, New York, 1994)Google Scholar
  9. 9.
    F.A. Gianturco, R.R. Lucchese, N. Sanna, A. Talamo, in Electron Collisions with Molecules, Clusters, and Surfaces, edited by*.xmlH. Ehrhardt, L.A. Morgan(Plenum, New York, 1994)Google Scholar
  10. 10.
    A.P.P. Natalense, R.R. Lucchese, J. Chem. Phys. 111, 5344 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 100, 6464 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 128, 139 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    H.H.H. Homeier, E.O. Steinborn, J. Mol. Struct. Theochem 368, 31 (1996)CrossRefGoogle Scholar
  14. 14.
    S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    R. Curik, F.A. Gianturco, N. Sanna, J. Phys. B 33, 2705 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    A. Jain, F.A. Gianturco, J. Phys. B 24, 2387 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kaur, A. Bharadvaja, K.L. Baluja, Phys. Rev. A 83, 062707 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 87, 062703 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 91, 032701 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana - J. Phys. 89, 30 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y.K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    M.J. Frisch, et al., Gaussian 03 (Gaussian Inc, Wallingford, CT, 2003)Google Scholar
  26. 26.
    NIST, Computational Chemistry Comparison and Benchmark DataBase,
  27. 27.
    N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 114, 142 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Chutjian, J. Chem. Phys. 61, 4279 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    L.E. Snyder, D. Buhl, B. Zuckermann, P. Palmer, Phys. Rev. Lett. 22, 679 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Pinto, G.R. Gladstone, Y.L. Yung, Science 210, 183 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    A.W. Schwartz, R.M. de Graaf, J. Mol. Evol. 35, 101 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    S.A. Benner, H.-J. Kim, M.-J. Kim, A. Ricardo, Cold Spring Harb. Perspect. Biol. 2, a003467 (2010)CrossRefGoogle Scholar
  33. 33.
    B. Boudaffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 28, 1658 (2000)ADSGoogle Scholar
  34. 34.
    A.A. Sobrinho, L.E. Machado, S.E. Michelin, L. Mu-Tao, L.M. Brescansin, J. Mol. Struct. Theochem 539, 65 (2001)CrossRefGoogle Scholar
  35. 35.
    M. Vinodkumar, K.N. Joshipura, C. Limbachiya, N.J. Mason, Phys. Rev. A 74, 022721 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    M. Vinodkumar, H. Bhutadia, C. Limbachiya, K.N. Joshipura, Int. J. Mass Spectrom. 308, 35 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Vinodkumar, H. Bhutadia, B. Antony, N. Mason, Phys. Rev. A 84, 052701 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Zecca, E. Trainotti, L. Chiari, G. Garcia, F. Blanco, M.H.F. Bettega, M.T. do N. Varella, M.A.P. Lima, M.J. Brunger, J. Phys. B: At., Mol. Opt. Phys. 44, 195202 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Vacher, F. Jorand, N. Blin-Simiand, S. Pasquiers, Chem. Phys. Lett. 476, 178 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    D. Gupta, B. Anthony, J. Chem. Phys. 141, 054303 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Tang, S. Yedave, O. Byl, J. Despres, E. Tien, S. Bishop, J. Sweeney, in21st International Conference on Ion Implantation Technology (2016), p. 176Google Scholar
  42. 42.
    Y. Mitsui, Y. Ohira, T. Yonemura, T. Takaichi, A. Sekiya, T.J. Beppu, J. Electrochem. Soc. 151, G297 (2004)CrossRefGoogle Scholar
  43. 43.
    F. Temps, H.G. Wagner, Appl. Phys. B 29, 13 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    A.R. Calloway, E.J. Danielewicz, Int. J. Infrared Milli. Waves 2, 933 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    J. Franklin, Chemosphere 27, 1565 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    R. Zander, C.P. Rinsland, E. Mahieu, M.R. Gunson, C.B. Farmer, M.C. Abrams, M.K.W. Ko, J. Geophys. Res. 99, 737 (1994)Google Scholar
  47. 47.
    J. Kaur, N. Mason, B. Antony, Phys. Rev. A 92, 052702 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    H.L. Cox, R.A. Bonham, J. Chem. Phys. 47, 2599 (1967)ADSCrossRefGoogle Scholar
  49. 49.
    K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F. Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannan, E.J. Sorensen, Nature 367, 630 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    W. Schneider, W. Diller, in Ullmann’s Encyclopedia of Industrial (Wiley-VCH, 2012), Vol. 26, p. 624Google Scholar
  51. 51.
    M.J. Parkington, T.A. Ryan, K.R. Seddon, J. Chem. Soc., Dalton Trans. 2, 257 (1997)CrossRefGoogle Scholar
  52. 52.
    Y. Ju, W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015)CrossRefGoogle Scholar
  53. 53.
    A. Starikovskiy, Philos. Trans. R. Soc. A 373, 20150074 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    D.A. Dixon, K.A. Peterson, J.S. Francisco, J. Phys. Chem. A 104, 6227 (2000)CrossRefGoogle Scholar
  55. 55.
    K. Fedus, G. Karwasz, Eur. Phys. J. D 71, 138 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bhaskaracharya College of Applied Sciences, University of DelhiNew DelhiIndia
  2. 2.Department of PhysicsSGTB Khalsa College, University of DelhiDelhiIndia
  3. 3.Formerly at Department of Physics and Astrophysics, University of DelhiDelhiIndia

Personalised recommendations