Advertisement

Solitary and shock wave in magnetized collisional pair-ion plasmas

  • Ashish AdakEmail author
  • Sudip Sengupta
Regular Article
  • 17 Downloads

Abstract

The effect of ion–ion collision on the dynamics of nonlinear magnetosonic wave in a magnetized pair-ion plasma consisting of positive and negative ions has been studied. The external magnetic field is situated perpendicular to the wave propagation. Two fluid model is used to describe the dynamics of positive and negative ions. Lagrangian transformation technique is used to carry out the linear and nonlinear analysis. Linear analysis yields the dispersion relation of magnetosonic wave in pair-ion plasmas. In small amplitude limit, Korteweg-de Vries Burgers’ (KdVB) equation has defined the nonlinear propagations of magnetosonic wave. Ion–ion collisions are the source of dissipation in the system and also the origin of the Burgers’ term in KdVB equation. This Burgers’ term in KdVB equation is the source of the shock structures in pair-ion plasmas. Analytical and numerical analysis reveals that the wave exhibits the solitary wave in absence of collisions. In presence of collisions, the wave exhibits both oscillatory and monotonic shock structures depending on the balance between dispersion and dissipation of the system. For weak dissipation compare to dispersion, oscillatory shock structure is formed and in reverse case, nonlinear wave exhibits monotonic shock wave.

Graphical abstract

Keywords

Plasma Physics 

Notes

Author contribution statement

All authors have contributed equally to the paper.

References

  1. 1.
    G. Gibson, W.C. Jordan, E.J. Lauer, Phys. Rev. Lett. 5, 141 (1960)ADSCrossRefGoogle Scholar
  2. 2.
    C.M. Surko, M. Leventhal, A. Passner, Phys. Rev. Lett. 62, 901 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    E.P. Liang, S.C. Wilks, M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P.D. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M. Doser, V. Filippini, A. Fontana, Phys. Rev. Lett. 91, 055001 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    F.C. Michel, Theory of Neutron Star Magnetospheres (Chicago University Press, Chicago, 1991)Google Scholar
  6. 6.
    P. Goldreich, W.H. Julian, Astrophys. J. 157 (1969) 869ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Rees, in The early universe, G.W. Gibbons, S.W. Hawking, S. Siklas (Cambridge University Press, Cambridge, 1983)Google Scholar
  8. 8.
    H.R. Miller, P.J. Witta, in Active Galactic Nuclei (Springer-Verlag, Berlin, 1987), p. 202Google Scholar
  9. 9.
    W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    W. Oohara, Y. Kuwabara, R. Hatakeyama, Phys. Rev. E 75, 056403 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    W. Oohara, R. Hatakeyama, Phys. Plasmas 14, 055704 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    R. Hatakeyama, W. Oohara, Phys. Scr. T116, 101 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ghosh, A. Adak, M. Khan, Phys. Plasmas 21, 012303 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    I. Kourakis, A. Esfandyari-Kalejahi, M. Mehdipoor, P.K. Shukla, Phys. Plasmas 13, 052117 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A. Sikdar, A. Adak, S. Ghosh, M. Khan, Phys. Plasmas 25, 052303 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    H. Saleem, J. Vranjes, S. Poedts, Phys. Lett. A 350, 375 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R. Saeed, A. Mushtaq, Phys. Plasmas 16, 032307 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Adak, S. Ghosh, N. Chakrabarti, Phys. Plasmas 25, 102307 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Mahmood, H. Ur-Rehman, Phys. Plasmas 17, 072305 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    W. Masood, S. Mahmood, N. Imtiaz, Phys. Plasmas 16, 122306 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    W. Masood, H. Rizvi, Phys. Plasmas 19, 012119 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A. Adak, A. Sikdar, S. Ghosh, M. Khan, Phys. Plasmas 23, 062124 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    N. Chakrabarti, C. Maity, H. Schamel, Phys. Rev. Lett. 106, 145003 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    N. Chakrabarti, C. Maity, H. Schamel, Phys. Rev. E 88, 023102 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M. Dutta, S. Ghosh, M. Khan, N. Chakrabarti, Phys. Plasmas 20, 122112 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Jana, S. Ghosh, N. Chakrabarti, Phys. Plasmas 23, 072304 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    I. Kourakis, S. Sultana, F. Verheest, Astrophys. Space Sci. 338, 245 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    W. Malfliet, W. Hereman, Phys. Scr. 54, 563 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    M. Dutta, S. Ghosh, M. Khan, R. Roychoudhury, N. Chakrabarti, Phys. Plasmas 20, 012113 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    P.A. Sturrock, Astrophys. J. 164, 529 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    M.L. Burns, in Positron-electron pairs in astrophysics, edited by M.L. Burns, A.K. Harding, R. Ramaty (American Institute of Physics, New York, 1983)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Plasma ResearchBhat, GandhinagarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia

Personalised recommendations