Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

Abstract

We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.E. Byfield, Invest. New Drugs 7, 111 (1989)

  2. 2.

    G.D. Wilson, S.M. Bentzen, P.M. Harari, Semin. Radiat. Oncol. 16, 2 (2006)

  3. 3.

    R. Schürmann, S. Vogel, K. Ebel, I. Bald, Chem. Eur. J. 24, 10271 (2018)

  4. 4.

    L. Sanche, Eur. Phys. J. D 35, 367 (2005)

  5. 5.

    G. Garca Gómez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer, 2012)

  6. 6.

    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

  7. 7.

    E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015)

  8. 8.

    The 5-fluorouracil mass spectrum in the NIST (USA) Chemistry WebBook, http://webbook.nist.gov/, Accessed June 2019

  9. 9.

    J.-P. Champeaux, P. Çarçabal, J. Rabier, P. Cafarelli, M. Sencea, P. Moretto-Capelle, Phys. Chem. Chem. Phys. 12, 5454 (2010)

  10. 10.

    J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Int. J. Mass Spectrom. 292, 53 (2010)

  11. 11.

    S. Denifl, S. Ptasińska, B. Gstir, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 232, 99 (2004)

  12. 12.

    J. Ulrich, R. Teoule, R. Massot, A. Cornu, Organic Mass Spectrom. 2, 1183 (1969)

  13. 13.

    M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 262, 154 (2007)

  14. 14.

    E. Itälä, D.T. Ha, K. Kooser, E. Rachlew, M.A. Huels, E. Kukk, J. Chem. Phys. 133, 154316 (2010)

  15. 15.

    E. Itälä, D.T. Ha, K. Kooser, M.A. Huels, E. Rachlew, E. Nõmmiste, U. Joost, E. Kukk, J. Electron. Spectrosc. Relat. Phenom. 184, 119 (2011)

  16. 16.

    M.-C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 503, 45 (2011)

  17. 17.

    M.-C. Bacchus-Montabonel, Y.S. Tergiman, D. Talbi, Phys. Rev. A 79, 012710 (2009)

  18. 18.

    R. Delaunay, J.-P. Champeaux, S. Maclot, M. Capron, A. Domaracka, A. Méry, B. Manil, L. Adoui, P. Rousseau, P. Moretto-Capelle, B.A. Huber, Eur. Phys. J. D 68, 68 (2014)

  19. 19.

    M.C. Castrovilli, P. Markush, P. Bolognesi, P. Rousseau, S. Maclot, A. Cartoni, R. Delaunay, A. Domaracka, J. Kočišek, B.A. Huber, L. Avaldi, Phys. Chem. Chem. Phys. 19, 19807 (2017)

  20. 20.

    R. Abouaf, J. Pommier, H. Dunet, Chem. Phys. Lett. 381, 486 (2003)

  21. 21.

    J. Rackwitz, M. Lj, A.R. Ranković, I.Bald Milosavljević, Eur. Phys. J. D 71, 32 (2017)

  22. 22.

    R. Abouaf, H. Dunet, Eur. Phys. J. D 35, 405 (2005)

  23. 23.

    F. Ferreira da Silva, D. Almeida, R. Antunes, G. Martins, Y. Nunes, S. Eden, G. Garcia, P. Limão-Vieira, Phys. Chem. Chem. Phys. 13, 21621 (2011)

  24. 24.

    P.J.M. van der Burgt, Eur. J. Phys. D 68, 135 (2014)

  25. 25.

    P.J.M. van der Burgt, F. Mahon, G. Barrett, M.L. Gradziel, Eur. J. Phys. D 68, 151 (2014)

  26. 26.

    P.J.M. van der Burgt, S. Finnegan, S. Eden, Eur. J. Phys. D 69, 173 (2015)

  27. 27.

    B. Barc, M. Ryszka, J. Spurrell, M. Dampc, P. Limão-Vieira, R. Parajuli, N.J. Mason, S. Eden, J. Chem. Phys. 139, 244311 (2013)

  28. 28.

    O. Ghafur, S. Crane, M. Ryszka, J. Bockova, A. Rebelo, L. Saalbach, S. De Camillis, J. Greenwood, S. Eden, D. Townsend, J. Chem. Phys. 149, 034301 (2018)

  29. 29.

    S. De Camillis, J. Miles, G. Alexander, O. Ghafur, I.D. Williams, D. Townsend, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 23643 (2015)

  30. 30.

    Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)

  31. 31.

    J.M. Rice, G.O. Dudek, M. Barber, J. Am. Chem. Soc. 87, 4569 (1956)

  32. 32.

    S. Denifl, B. Sonnweber, G. Hanel, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 238, 471 (2004)

  33. 33.

    M.A. Rahman, E. Krishnakumar, Int. J. Mass Spectrom. 392, 145 (2015)

  34. 34.

    M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 245, 68 (2005)

  35. 35.

    N. Markova, V. Enchev, I. Timtcheva, J. Phys. Chem. A 109, 1981 (2005)

  36. 36.

    D.M.P. Holland, A.W. Potts, L. Karlsson, I.L. Zaytseva, A.B. Trofimov, J. Schirmer, Chem. Phys. 352, 205 (2008)

  37. 37.

    H.-W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chem. Phys. 314, 263 (2005)

  38. 38.

    C. Zhou, S. Matsika, M. Kotur, T.C. Weinacht, J. Phys. Chem. A 116, 9217 (2012)

  39. 39.

    C.A. Bauer, S. Grimme, Eur. J. Mass Spectrom. 21, 125 (2015)

  40. 40.

    M. Barbatti, A.J.A. Aquino, H. Lischka, Phys. Chem. Chem. Phys. 12, 4959 (2010)

  41. 41.

    S. Ullrich, T. Schultz, M.Z. Zgierski, A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004)

  42. 42.

    S. Yamazaki, T. Taketsugu, J. Phys. Chem. A 116, 491 (2012)

  43. 43.

    M. Ligare, F. Siouri, O. Bludsky, D. Nachtigallová, M.S. de Vries, Phys. Chem. Chem. Phys. 17, 24336 (2015)

  44. 44.

    M.Z. Zgierski, S. Patchkovskii, T. Fujiwara, E.C. Lim, J. Phys. Chem. A. 109, 9384 (2005)

  45. 45.

    R. Pandey, M. Ryszka, T. da Fonseca Cunha, M. Lalande, M. Dampc, P. Limão-Vieira, N.J. Mason, J.-C. Poully, S. Eden, Chem. Phys. Lett. 648, 233 (2017)

  46. 46.

    M. Ryszka, R. Pandey, C. Rizk, J. Tabet, B. Barc, M. Dampc, N.J. Mason, S. Eden, Int. J. Mass. Spectrom. 396, 48 (2016)

  47. 47.

    A.A. Zadorozhnaya, A.I. Krylov, J. Chem. Theory Comput. 6, 705 (2010)

  48. 48.

    L. Sadr-Arani, P. Mignon, H. Chermette, Th Douki, Chem. Phys. Lett. 605–606, 108 (2014)

  49. 49.

    N. Ding, X. Chen, C.-M.L. Wu, H. Li, Phys. Chem. Chem. Phys. 15, 10767 (2013)

  50. 50.

    D.G. Beach, W. Gabryelski, J. Am. Soc. Mass Spectrom. 23, 858 (2012)

Download references

Author information

Correspondence to Peter J. M. van der Burgt.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van der Burgt, P.J.M., Brown, M.A., Bockova, J. et al. Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters. Eur. Phys. J. D 73, 184 (2019). https://doi.org/10.1140/epjd/e2019-100107-7

Download citation

Keywords

  • Topical issue