Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

  • Peter J. M. van der BurgtEmail author
  • Michael A. Brown
  • Jana Bockova
  • André Rebelo
  • Michal Ryszka
  • Jean-Christophe Poully
  • Sam Eden
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)


We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil.

Graphical abstract


Topical issue 


  1. 1.
    J.E. Byfield, Invest. New Drugs 7, 111 (1989)Google Scholar
  2. 2.
    G.D. Wilson, S.M. Bentzen, P.M. Harari, Semin. Radiat. Oncol. 16, 2 (2006)Google Scholar
  3. 3.
    R. Schürmann, S. Vogel, K. Ebel, I. Bald, Chem. Eur. J. 24, 10271 (2018)Google Scholar
  4. 4.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005)ADSGoogle Scholar
  5. 5.
    G. Garca Gómez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer, 2012)Google Scholar
  6. 6.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSGoogle Scholar
  7. 7.
    E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015)ADSGoogle Scholar
  8. 8.
    The 5-fluorouracil mass spectrum in the NIST (USA) Chemistry WebBook,, Accessed June 2019
  9. 9.
    J.-P. Champeaux, P. Çarçabal, J. Rabier, P. Cafarelli, M. Sencea, P. Moretto-Capelle, Phys. Chem. Chem. Phys. 12, 5454 (2010)Google Scholar
  10. 10.
    J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Int. J. Mass Spectrom. 292, 53 (2010)Google Scholar
  11. 11.
    S. Denifl, S. Ptasińska, B. Gstir, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 232, 99 (2004)Google Scholar
  12. 12.
    J. Ulrich, R. Teoule, R. Massot, A. Cornu, Organic Mass Spectrom. 2, 1183 (1969)Google Scholar
  13. 13.
    M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 262, 154 (2007)Google Scholar
  14. 14.
    E. Itälä, D.T. Ha, K. Kooser, E. Rachlew, M.A. Huels, E. Kukk, J. Chem. Phys. 133, 154316 (2010)ADSGoogle Scholar
  15. 15.
    E. Itälä, D.T. Ha, K. Kooser, M.A. Huels, E. Rachlew, E. Nõmmiste, U. Joost, E. Kukk, J. Electron. Spectrosc. Relat. Phenom. 184, 119 (2011)Google Scholar
  16. 16.
    M.-C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 503, 45 (2011)ADSGoogle Scholar
  17. 17.
    M.-C. Bacchus-Montabonel, Y.S. Tergiman, D. Talbi, Phys. Rev. A 79, 012710 (2009)ADSGoogle Scholar
  18. 18.
    R. Delaunay, J.-P. Champeaux, S. Maclot, M. Capron, A. Domaracka, A. Méry, B. Manil, L. Adoui, P. Rousseau, P. Moretto-Capelle, B.A. Huber, Eur. Phys. J. D 68, 68 (2014)Google Scholar
  19. 19.
    M.C. Castrovilli, P. Markush, P. Bolognesi, P. Rousseau, S. Maclot, A. Cartoni, R. Delaunay, A. Domaracka, J. Kočišek, B.A. Huber, L. Avaldi, Phys. Chem. Chem. Phys. 19, 19807 (2017)Google Scholar
  20. 20.
    R. Abouaf, J. Pommier, H. Dunet, Chem. Phys. Lett. 381, 486 (2003)ADSGoogle Scholar
  21. 21.
    J. Rackwitz, M. Lj, A.R. Ranković, I.Bald Milosavljević, Eur. Phys. J. D 71, 32 (2017)ADSGoogle Scholar
  22. 22.
    R. Abouaf, H. Dunet, Eur. Phys. J. D 35, 405 (2005)ADSGoogle Scholar
  23. 23.
    F. Ferreira da Silva, D. Almeida, R. Antunes, G. Martins, Y. Nunes, S. Eden, G. Garcia, P. Limão-Vieira, Phys. Chem. Chem. Phys. 13, 21621 (2011)Google Scholar
  24. 24.
    P.J.M. van der Burgt, Eur. J. Phys. D 68, 135 (2014)ADSGoogle Scholar
  25. 25.
    P.J.M. van der Burgt, F. Mahon, G. Barrett, M.L. Gradziel, Eur. J. Phys. D 68, 151 (2014)ADSGoogle Scholar
  26. 26.
    P.J.M. van der Burgt, S. Finnegan, S. Eden, Eur. J. Phys. D 69, 173 (2015)ADSGoogle Scholar
  27. 27.
    B. Barc, M. Ryszka, J. Spurrell, M. Dampc, P. Limão-Vieira, R. Parajuli, N.J. Mason, S. Eden, J. Chem. Phys. 139, 244311 (2013)ADSGoogle Scholar
  28. 28.
    O. Ghafur, S. Crane, M. Ryszka, J. Bockova, A. Rebelo, L. Saalbach, S. De Camillis, J. Greenwood, S. Eden, D. Townsend, J. Chem. Phys. 149, 034301 (2018)ADSGoogle Scholar
  29. 29.
    S. De Camillis, J. Miles, G. Alexander, O. Ghafur, I.D. Williams, D. Townsend, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 23643 (2015)Google Scholar
  30. 30.
    Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)ADSGoogle Scholar
  31. 31.
    J.M. Rice, G.O. Dudek, M. Barber, J. Am. Chem. Soc. 87, 4569 (1956)Google Scholar
  32. 32.
    S. Denifl, B. Sonnweber, G. Hanel, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 238, 471 (2004)Google Scholar
  33. 33.
    M.A. Rahman, E. Krishnakumar, Int. J. Mass Spectrom. 392, 145 (2015)Google Scholar
  34. 34.
    M. Imhoff, Z. Deng, M.A. Huels, Int. J. Mass Spectrom. 245, 68 (2005)Google Scholar
  35. 35.
    N. Markova, V. Enchev, I. Timtcheva, J. Phys. Chem. A 109, 1981 (2005)Google Scholar
  36. 36.
    D.M.P. Holland, A.W. Potts, L. Karlsson, I.L. Zaytseva, A.B. Trofimov, J. Schirmer, Chem. Phys. 352, 205 (2008)Google Scholar
  37. 37.
    H.-W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chem. Phys. 314, 263 (2005)Google Scholar
  38. 38.
    C. Zhou, S. Matsika, M. Kotur, T.C. Weinacht, J. Phys. Chem. A 116, 9217 (2012)Google Scholar
  39. 39.
    C.A. Bauer, S. Grimme, Eur. J. Mass Spectrom. 21, 125 (2015)Google Scholar
  40. 40.
    M. Barbatti, A.J.A. Aquino, H. Lischka, Phys. Chem. Chem. Phys. 12, 4959 (2010)Google Scholar
  41. 41.
    S. Ullrich, T. Schultz, M.Z. Zgierski, A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004)Google Scholar
  42. 42.
    S. Yamazaki, T. Taketsugu, J. Phys. Chem. A 116, 491 (2012)Google Scholar
  43. 43.
    M. Ligare, F. Siouri, O. Bludsky, D. Nachtigallová, M.S. de Vries, Phys. Chem. Chem. Phys. 17, 24336 (2015)Google Scholar
  44. 44.
    M.Z. Zgierski, S. Patchkovskii, T. Fujiwara, E.C. Lim, J. Phys. Chem. A. 109, 9384 (2005)Google Scholar
  45. 45.
    R. Pandey, M. Ryszka, T. da Fonseca Cunha, M. Lalande, M. Dampc, P. Limão-Vieira, N.J. Mason, J.-C. Poully, S. Eden, Chem. Phys. Lett. 648, 233 (2017)ADSGoogle Scholar
  46. 46.
    M. Ryszka, R. Pandey, C. Rizk, J. Tabet, B. Barc, M. Dampc, N.J. Mason, S. Eden, Int. J. Mass. Spectrom. 396, 48 (2016)Google Scholar
  47. 47.
    A.A. Zadorozhnaya, A.I. Krylov, J. Chem. Theory Comput. 6, 705 (2010)Google Scholar
  48. 48.
    L. Sadr-Arani, P. Mignon, H. Chermette, Th Douki, Chem. Phys. Lett. 605–606, 108 (2014)ADSGoogle Scholar
  49. 49.
    N. Ding, X. Chen, C.-M.L. Wu, H. Li, Phys. Chem. Chem. Phys. 15, 10767 (2013)Google Scholar
  50. 50.
    D.G. Beach, W. Gabryelski, J. Am. Soc. Mass Spectrom. 23, 858 (2012)ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peter J. M. van der Burgt
    • 1
    Email author
  • Michael A. Brown
    • 1
  • Jana Bockova
    • 2
  • André Rebelo
    • 2
    • 3
  • Michal Ryszka
    • 2
  • Jean-Christophe Poully
    • 4
  • Sam Eden
    • 2
  1. 1.Department of Experimental PhysicsNational University of Ireland Maynooth MaynoothMaynooth, Co. KildareIreland
  2. 2.School of Physical Sciences, The Open UniversityMilton KeynesUK
  3. 3.Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, FCT – Universidade NOVA de LisboaCaparicaPortugal
  4. 4.CIMAP UMR 6252 (CEA/CNRS/ENSICAEN/Université de Caen Normandie)Caen Cedex 5France

Personalised recommendations