Advertisement

Energy loss of H+ and H2+ beams in carbon nanotubes: a joint experimental and simulation study

  • Jorge E. Valdés
  • Carlos Celedón
  • Mario Mery
  • Juan D. Uribe
  • Rodrigo Segura
  • Néstor R. Arista
  • Isabel Abril
  • Rafael Garcia-MolinaEmail author
Regular Article
  • 30 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

Carbon nanotube properties can be modified by ion irradiation; therefore it is important to know the manner in which ions deposit energy (how much and where) in the nanotubes. In this work, we have studied, experimentally and with a simulation code, the irradiation of multi-walled carbon nanotubes (MWCNT), supported on a holey amorphous carbon (a-C) substrate, with low energy (2–10 keV/u) H+ and H2+ molecular beams, impinging perpendicularly to the MWCNT axis. The energy distribution of protons traversing the nanotubes (either from the H+ beam or dissociated from the H2+ beam) was measured by the transmission technique in the forward direction. Two well-differentiated peaks appear in the experimental energy-loss distribution of the fragments dissociated from the molecular H2+ beam, in correspondence to the ones detected with the proton beam. One is the low-energy loss peak (LELP), which has a symmetric width; the other is the high-energy loss peak (HELP), which shows an asymmetric broadening towards larger energy loss than the corresponding proton energy distribution. A semi-classical simulation, accounting for the main interaction processes (both elastic and inelastic), of the proton trajectories through the nanotube and the supporting substrate has been done, in order to elucidate the origin of these structures in the energy spectra. Regarding the H+ energy spectrum, the LELP corresponds to projectiles that travel in quasi-channelling motion through the most outer walls of the nanotubes and then pass through the substrate holes, whereas the HELP results mostly from projectiles traversing only the a-C substrate, with the asymmetry broadening being due to a minor contribution of those protons that cross the a-C substrate after exiting the nanotube. The broadening of the peaks corresponding to dissociated fragments, with respect to that of the isolated protons, is the result of vicinage effects between the fragments, when travelling in quasi-channelling conditions through the outer layers of the nanotube, and Coulomb explosion just after exiting the target. The excellent agreement between the measured and the simulated energy spectra of the H+ beam validates our simulation code in order to predict the energy deposited by ion beams in carbon nanotubes.

Graphical abstract

Keywords

Topical issue 

References

  1. 1.
    S.M. Shubeita, P.L. Grande, J.F. Dias, R. Garcia-Molina, C.D. Denton, I. Abril, Phys. Rev. B 83, 245423 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    N.E. Koval, A.G. Borisov, L.F.S. Rosa, E.M. Stori, J.F. Dias, P.L. Grande, D. Sánchez-Portal, R. Dez Muiño, Phys. Rev. A 95, 062707 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    J.E. Valdés, C. Parra, J. Daz-Valdés, C.D. Denton, C. Agurto, F. Ortega, N.R. Arista, P. Vargas, Phys. Rev. A 68, 064901 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes, Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)Google Scholar
  6. 6.
    A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Olejniczak, V.A. Skuratov, Nucl. Instrum. Methods Phys. Res. B 326, 33 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, L. Chen, Z. Xu, Y. Li, M. Shan, L. Liu, Q. Guo, G. Chen, Z. Wang, C. Wang, Int. J. Mat. Prod. Technol. 45, 1 (2012)CrossRefGoogle Scholar
  9. 9.
    Z.L. Mišković, Radiat. Eff. Defects Solids 162, 185 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J.E. Valdés, C. Celedón, R. Segura, I. Abril, R. Garcia-Molina, C.D. Denton, N.R. Arista, P. Vargas, Carbon 52, 137 (2013)CrossRefGoogle Scholar
  11. 11.
    C.E. Celedón, A. Cortés, E.A. Sánchez, M.S. Moreno, J.D. Uribe, N.R. Arista, J.E. Valdés, Eur. Phys. J. D 71, 64 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Segura, A. Tello, G. Cárdenas, P. Häberle, Phys. Status Solidi A 204, 513 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    I. Kyriakou, C. Celedón, R. Segura, D. Emfietzoglou, P. Vargas, J.E. Valdés, I. Abril, C.D. Denton, K. Kostarelos, R. Garcia-Molina, Nucl. Instrum. Methods Phys. Res. B 268, 1781 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Segura, S. Hevia, P. Häberle, J. Nanosci. Nanotechnol. 11, 10036 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Garcia-Molina, M.D. Barriga-Carrasco, Phys. Rev. A 68, 054901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    P.M. Echenique, R.M. Nieminen, R.H. Ritchie, Solid State Commun. 37, 779 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 164–165, 108 (2000)CrossRefGoogle Scholar
  18. 18.
    J.C. Eckardt, G.H. Lantschner, N.R. Arista, R.A. Baragiola, J. Phys. C 11, L851 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    R. Levi-Setti, K. Lam, T.R. Fox, Nucl. Instrum. Methods Phys. Res. 194, 281 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    E.A. Figueroa, E.D. Cantero, J.C. Eckardt, G.H. Lantschner, M.L. Martiarena, N.R. Arista, Phys. Rev. A 78, 032901 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Gridneva, N.N. Koborov, V.A. Kurnaev, N.N. Trifonov, JETP Lett. 1, 15 (2003)Google Scholar
  22. 22.
    W.W. Ruland, A.K. Schaperb, H. Houa, A. Greinera, Carbon 41, 423 (2003)CrossRefGoogle Scholar
  23. 23.
    M.O. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)Google Scholar
  24. 24.
    W. Eckstein, Computer Simulation of Ion-solid Interactions (Springer-Verlag, Berlin, 1991)Google Scholar
  25. 25.
    C.E. Celedón, E.D. Cantero, G.H. Lantschner, N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 315, 21 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    O.K. Andersen, Z. Pawlowska, O. Jepsen, Phys. Rev. B 34, 5253 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    D. Isaacson, Compilation of r s Values, Internal Report, Radiation and Solid State Laboratory (New York University, New York, 1975)Google Scholar
  29. 29.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001)CrossRefGoogle Scholar
  30. 30.
    J.A. Phillips, Phys. Rev. 97, 404(1955)ADSCrossRefGoogle Scholar
  31. 31.
    R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Nucl. Instrum. Methods Phys. Res. B 249, 6 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    P. Sigmund, , Particle Penetration and Radiation Effects, Vol. 2: Penetration of Atomic and Molecular Ions (Springer, 2014)Google Scholar
  33. 33.
    M.D. Barriga-Carrasco, R. Garcia-Molina, Phys. Rev. A 68, 062902 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física – Laboratorio de Colisiones Atómicas, Universidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Center for the Development of Nanoscience and Nanotechnology, Centro Basal CEDENNASantiagoChile
  3. 3.Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de ValparaísoValparaísoChile
  4. 4.Centro Atómico Bariloche, División Colisiones AtómicasS.C. de BarilocheArgentina
  5. 5.Departament de Física Aplicada, Universitat d’AlacantAlacantSpain
  6. 6.Departamento de Física – Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de MurciaMurciaSpain
  7. 7.Donostia International Physics Center DIPCSan SebastiánSpain
  8. 8.Centro Científico Tecnológico de Valparaíso – CCTVal, Universidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations