Detecting two qubit both-way positive discord states
- 19 Downloads
Abstract
Quantum discord plays a pragmatic role in analyzing nonclassical feature of quantum correlations beyond entanglement. It is used in several information processing protocols which lacks sufficient amount of entanglement to be used as a resource. We have provided with an analytical method of detecting quantum discord of an arbitrary two qubit state. We have formulated a set of necessary and sufficient conditions for any two qubit state to be a both-way non-zero quantum discord state. As quantum discord is asymmetric in nature, we have framed the set of if and only if conditions for a two qubit state to be classical-quantum as well for it to be quantum-classical. Interestingly, not only correlation tensor but also local Bloch vector (corresponding to the classical party) plays a role for detecting the state to be a positive discord state.
Graphical abstract
Keywords
Quantum InformationReferences
- 1.R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
- 2.A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
- 3.H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
- 4.M.D. Lang, C.M. Caves, A. Shaji, Int. J. Quantum. Inform. 9, 1553 (2011)CrossRefGoogle Scholar
- 5.A. Datta, Phys. Rev. A 80, 052304 (2009)ADSCrossRefGoogle Scholar
- 6.B. Bylicka, D. Chruscinski, Phys. Rev. A 81, 062102 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 7.B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
- 8.J. Maziero, R.M. Serra, Int. J. Quantum. Inform. 10, 1250028 (2012)CrossRefGoogle Scholar
- 9.A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acin, Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
- 10.D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar
- 11.R. Laflamme, D.G. Cory, C. Negrevergne, L. Viola, Quantum Inf. Comput. 2, 166 (2002)MathSciNetGoogle Scholar
- 12.J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
- 13.Z. Merali, Nature (London) 474, 24 (2011)ADSCrossRefGoogle Scholar
- 14.K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
- 15.A. Brodutch, D.R. Terno, Phys. Rev. A 83, 010301 (2011)ADSCrossRefGoogle Scholar
- 16.V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 17.K. Modi, H. Cable, M. Williamson, V. Vedral, Phys. Rev. X 1, 021022 (2011)Google Scholar
- 18.S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 2000)Google Scholar
- 19.L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)ADSCrossRefGoogle Scholar
- 20.M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)ADSCrossRefGoogle Scholar
- 21.M. Horodecki, J. Oppenheim, A. Winter, Nature 436, 673 (2005)ADSCrossRefGoogle Scholar
- 22.M. Horodecki, J. Oppenheim, A. Winter, Comm. Math. Phys. 269, 107 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 23.M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)Google Scholar
- 24.W.H. Zurek, Ann. Phys. (Leipzig) 9, 855 (2000)ADSCrossRefGoogle Scholar
- 25.M. Zwolak, H.T. Quan, W.H. Zurek, Phys. Rev. A 81, 062110 (2010)ADSCrossRefGoogle Scholar
- 26.K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)ADSCrossRefGoogle Scholar
- 27.R. Srikanth, S. Banerjee, C.M. Chandrashekar, Phys. Rev. A 81, 062123 (2010)ADSCrossRefGoogle Scholar
- 28.G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Phys. Rev. A 85, 052101 (2012)ADSCrossRefGoogle Scholar
- 29.T. Yu, J.H. Eberly, Quantum Inform. Comput. 7, 459 (2007)Google Scholar
- 30.A.R.P. Rau, J. Phys. A: Math. Theor. 42, 412002 (2009)CrossRefGoogle Scholar
- 31.R.F. Werner, Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
- 32.D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Phys. Rev. A 83, 032324 (2011)ADSCrossRefGoogle Scholar
- 33.H. Barnum, C. Caves, C. Fuchs, R. Jozsa, B. Schumacher, Phys. Rev. Lett. 76, 2818 (1996)ADSCrossRefGoogle Scholar
- 34.W.K. Wootters, W.H. Zurek, Nature (London) 299, 802 (1982)ADSCrossRefGoogle Scholar
- 35.S. Luo, Lett. Math. Phys. 92, 143 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 36.S. Luo, N. Li, X. Cao, Phys. Rev. A 79, 054305 (2009)ADSCrossRefGoogle Scholar
- 37.S. Luo, W. Sun, Phys. Rev. A 82, 012338 (2010)ADSCrossRefGoogle Scholar
- 38.G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010)ADSCrossRefGoogle Scholar
- 39.G. Adesso, D. Girolami, Int. J. Quantum. Inform. 9, 1773 (2011)CrossRefGoogle Scholar