Advertisement

Gas temperature in the microwave discharge in liquid n-heptane with argon bubbling

  • Yuri A. LebedevEmail author
  • Viatcheslav A. Shakhatov
Regular Article
  • 6 Downloads

Abstract

Measurement and simulation of the Swan bands’ emission of the atmospheric pressure microwave discharge in liquid n-heptane with and without argon bubbling were carried out. Rotational and vibrational temperature of C2(d3Πg) state are determined. It is shown that the bubbling of argon does not change the rotational temperature. The reasons for the unchanged temperature and the possibility of using the rotational temperature as the gas temperature are discussed.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    P. Bruggeman, C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J. Phys. D: Appl. Phys. 45, 253001 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D.F. Rivas, Plasma Sources Sci. Technol. 25, 053002 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Yang, Y.I. Cho, A. Fridman, Plasma Discharge in Liquid: Water Treatment and Applications (CRC Press, London, New York, 2012).Google Scholar
  5. 5.
    J. Foster, Phys. Plasmas 24 (2017) 055501.ADSCrossRefGoogle Scholar
  6. 6.
    P. Vanraes, A. Bogaerts, Appl. Phys. Rev. 5, 031103 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    Y.A. Lebedev, Plasma Phys. Rep. 43, 676 (2017).ADSGoogle Scholar
  8. 8.
    S. Horikoshi, N. Serpone, RSC Adv. 7, 47196 (2017).CrossRefGoogle Scholar
  9. 9.
    Y.A. Lebedev, High Temp. 56, 811 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Nomura, H. Toyota, Appl. Phys. Lett. 83, 4503 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Averin, I.V. Bilera, Y.A. Lebedev, V.A. Shakhatov, I.L. Epstein, Plasma Processes Polym. 16, e1800198 (2019).CrossRefGoogle Scholar
  12. 12.
    R.B. King, Astrophys. J. 108 (1948) 429.ADSCrossRefGoogle Scholar
  13. 13.
    R.C. Johnson, Philos. Trans. R. Soc. London, Ser. A 226, 157 (1927).ADSCrossRefGoogle Scholar
  14. 14.
    A.G. Gaydon, H.G. Wolfhard, Proc. R. Soc. London, Ser. A 201, 561 (1950).ADSCrossRefGoogle Scholar
  15. 15.
    S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, J. Chapelle, J. Phys. D: Appl. Phys. 29, 2850 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    P. Veis, C.S. Cojocaru, F. Le Normand, Acta Phys. Univ. Comenianae XLIV–XLV, 95 (2003–2004).Google Scholar
  17. 17.
    W. Bongers, H. Bouwmeester, B. Wolf, F. Peeters, S. Welzel, D. van den Bekerom, N. den Harder, A. Goede, M. Graswinckel, P.W. Groen, J. Kopecki, Plasma Processes Polym. 14, e1600126 (2017).CrossRefGoogle Scholar
  18. 18.
    K.A. Averin, Y.A. Lebedev, V.A. Shakhatov, Plasma Phys. Rep. 44, 145 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    Y.A. Lebedev, K.A. Averin, J. Phys. D: Appl. Phys. 51, 214005 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    Y.A. Lebedev, A.V. Tatarinov, I.L. Epstein, K.A. Averin, Plasma Chem. Plasma Process. 36, 535 (2016).CrossRefGoogle Scholar
  21. 21.
    Y.A. Lebedev, I.L. Epstein, V.A. Shakhatov, E.V. Yusupova, V.S. Konstantinov, High Temp. 52, 319 (2014).CrossRefGoogle Scholar
  22. 22.
    G. Faure, S.M. Shkol’nik, J. Phys. D: Appl. Phys. 31, 1412 (1998).CrossRefGoogle Scholar
  23. 23.
    J. Mizeraczyk, B. Hrycak, M. Jasinski, M. Dors, Int. J. Plasma Environ. Sci. Technol. 6, 239 (2012).Google Scholar
  24. 24.
    H. Nassar, J. Phys.: Conf. Ser. 511, 012066 (2014).Google Scholar
  25. 25.
    V.N. Ochkin, Spectroscopy of Low Temperature Plasma (Wiley-VCH, 2009).Google Scholar
  26. 26.
    D.I. Slovetskii, in Chemistry of Plasma, edited by B.M. Smirnov [in Russian] (Energoizdat, Moscow, 1981), Issue 8, pp. 189–229.Google Scholar
  27. 27.
    S. Nomura, H. Toyota, S. Mukasa, H. Yamashita, T. Maehara, A. Kawashima, J. Appl. Phys. 106, 073306 (2009).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS)MoscowRussia

Personalised recommendations