Advertisement

Contribution of higher order corrections to the dust acoustic soliton energy in non-Maxwellian dusty plasma

  • Nabil Arab
  • Rabia AmourEmail author
  • Mustapha Bacha
Regular Article
  • 17 Downloads

Abstract

The contribution of higher order corrections to the DA soliton energy in the presence of nonthermal ions is investigated. Our plasma model is inspired from the experimental study of Bandyopadhyay et al. [P. Bandypadhyay, G. Prasad, A. Sen, P.K. Kaw, Phys. Rev. Lett. 101, 065006 (2008)]. Using the approach based on the expansion of Sagdeev potential up to the fourth-order, a second order inhomogeneous differential equation termed dressed soliton is obtained. The latter is divided into two contributions, the usual K-dV solution and the higher order correction structure. Our results reveal that the main quantities of these localized structures are significantly modified by the nonthermality effects. In particular, an increase of ion’s nonthermal character leads to an increase of the amplitude and width of all the structures. The role the higher order corrections and nonthermal ions may play on the energy carried by the DA soliton is then examined. For a given value of nonthermal parameter α, it is shown that due to the higher order correction contribution, the departure between the K-dV soliton energy and the dressed one becomes more important as soliton velocity λ increases. For the sake of comparison, the presented model is reduced to a Maxwellian plasma and the results are compared to their experimental counterparts.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)Google Scholar
  2. 2.
    F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000)Google Scholar
  3. 3.
    V.N. Tsytovich, G.E. Morfill, S.V. Vladimirov, H.M. Thomas, Elementary Physics of Complex Plasmas (Springer-Verlag, Berlin, 2008)Google Scholar
  4. 4.
    C.K. Goertz, Rev. Geophys. 27, 271 (1989)CrossRefGoogle Scholar
  5. 5.
    T.G. Northrop, Phys. Scr. 45, 475 (1992)CrossRefGoogle Scholar
  6. 6.
    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)CrossRefGoogle Scholar
  7. 7.
    J.R. Asbridge, S.J. Bame, I.B. Strong, J. Geophys. Res. 73, 5777 (1968)CrossRefGoogle Scholar
  8. 8.
    W.C. Feldman, S.J. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, J. Geophys. Res. 88, 96 (1983)CrossRefGoogle Scholar
  9. 9.
    R. Lundlin, A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E.M. Dubinin, S.W. Barabash, I. Liede, H. Koskinen, Nature (London) 341, 609 (1989)CrossRefGoogle Scholar
  10. 10.
    Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 1025 (2003)CrossRefGoogle Scholar
  11. 11.
    M.V. Goldman, M.M. Oppenheim, D.L. Newman, Nonlin. Process. Geophys. 6, 221 (1999)CrossRefGoogle Scholar
  12. 12.
    R.C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972)Google Scholar
  13. 13.
    S. Ghosh, R. Bharuthram, M. Khan, M.R. Gupta, Phys. Plasmas 11, 3602 (2004)CrossRefGoogle Scholar
  14. 14.
    L.P. Zhang, J.K. Xue, Phys. Plasmas 12, 042304 (2005)CrossRefGoogle Scholar
  15. 15.
    W.F. El-Taibany, R. Sabry, Phys. Plasmas 12, 082302 (2005)CrossRefGoogle Scholar
  16. 16.
    J.F. Zhang, Y.Y. Wang, Phys. Plasmas 13, 022304 (2006)CrossRefGoogle Scholar
  17. 17.
    W.F. El-Taibany, I. Kourakis, Phys. Plasmas 13, 062302 (2006)CrossRefGoogle Scholar
  18. 18.
    W.F. El-Taibany, M. Wadati, R. Sabry, Phys. Plasmas 14, 032304 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Tribeche, M. Bacha, Phys. Plasmas 20, 103704 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Tribeche, R. Amour, Phys. Plasmas 14, 103707 (2007)CrossRefGoogle Scholar
  21. 21.
    H. Abbasi, H.P. Hakimi, Plasma Phys. Contr. Fusion 50, 095007 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Alinejad, Astrophys. Space Sci. 325, 209 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Guo, J. Du, Physica A 390, 183 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Alinejad, Phys. Lett. A 375, 1005 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Tribeche, L. Djebarni, H. Schamel, Phys. Lett. A 376, 3164 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Amour, M. Tribeche, P.K. Shukla, Astrophys. Space Sci. 338, 287 (2012)CrossRefGoogle Scholar
  27. 27.
    I. Hadjaz, M. Tribeche, Astrophys Space Sci 351, 591 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Merriche, L.A. Gougam, M. Tribeche, Physica A 442, 409 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    M.M. Hatami, M. Tribeche, Physica A 491, 55 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Ouazene, R. Amour, Astrophys. Space Sci. 364, 20 (2019)CrossRefGoogle Scholar
  31. 31.
    R.J. Taylor, D.R. Baker, H. Ikezi, Phys. Rev. Lett. 25, 11 (1970)CrossRefGoogle Scholar
  32. 32.
    H. Ikezi, Phys. Fluids 16, 1668 (1973)CrossRefGoogle Scholar
  33. 33.
    E.K. El-Shewy, Chaos Solitons Fractals 26, 1073 (2005)CrossRefGoogle Scholar
  34. 34.
    R.S. Tiwari, M.K. Mishra, Phys. Plasmas 13, 062112 (2006)CrossRefGoogle Scholar
  35. 35.
    R.S. Tiwari, Phys. Lett. A 372, 3461 (2007)CrossRefGoogle Scholar
  36. 36.
    S.K. El-Labany, W.F. El-Taibany, O.M. El-Abbasy, Chaos Solitons Fractals 33, 813 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    T.S. Gill, P. Bala, H. Kaur, Phys. Plasmas 15, 122309 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, Y. Dong, B. Eliasson, Phys. Lett. A 377, 2604 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    R. Amour, L. Ait Gougam, M. Tribeche, Physica A 436, 856 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Benzekka, M. Tribeche, Physica A 506, 578 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Mushtaq, H.A. Shah, N. Rubab, G. Murtaza, Phys. Plasmas 13, 062903 (2006)CrossRefGoogle Scholar
  42. 42.
    E.K. El-Shewy, Chaos Solitons Fractals 31, 1020 (2007)CrossRefGoogle Scholar
  43. 43.
    E.K. El-Shewy, M.I. Abo el Maaty, H.G. Abdelwahed, M.A. Elmessary, Astrophys. Space Sci. 332, 179 (2011)CrossRefGoogle Scholar
  44. 44.
    H.R. Pakzad, K. Javidan, Astrophys. Space Sci. 333, 257 (2011)CrossRefGoogle Scholar
  45. 45.
    H.R. Pakzad, Astrophys. Space Sci. 337, 217 (2012)CrossRefGoogle Scholar
  46. 46.
    L. Djebarni, L. Ait Gougam, M. Tribeche, Astrophys. Space Sci. 350, 541 (2014)CrossRefGoogle Scholar
  47. 47.
    D. Summers, R.M. Thorne, Phys. Fluids B 3, 2117 (1991)CrossRefGoogle Scholar
  48. 48.
    F. Melandsø, T. Aslaksen, O. Havnes, Planet. Space Sci. 41, 321 (1993)CrossRefGoogle Scholar
  49. 49.
    R.S. Tiwari, A. Kaushik, M.K. Mishra, Phys. Lett. A 365, 335 (2007)CrossRefGoogle Scholar
  50. 50.
    R.Z. Sagdeev, in Reviews of Plasma Physics , edited by M.A. Leontovich (Consultants Bureau, New York, 1966) Vol. 4, p. 23Google Scholar
  51. 51.
    P. Bandypadhyay, G. Prasad, A. Sen, P.K. Kaw, Phys. Rev. Lett. 101, 065006 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHBEl AliaAlgeria

Personalised recommendations