Advertisement

Simulation of the energy spectra of swift light ion beams after traversing cylindrical targets: a consistent interpretation of experimental data relevant for hadron therapy

  • Pablo de VeraEmail author
  • Rafael Garcia-Molina
  • Isabel Abril
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

We have performed detailed simulations of the energy spectra, recorded at several angles, of proton and helium ion beams after traversing thin cylindrical targets of different nature (liquid water and ethanol jets, as well as a solid aluminium wire), in order to reproduce a series of measurements intended to assess the stopping power of 0.3–2 MeV ions. The authors of these experiments derived values of the stopping power of liquid water (a quantity essential for the evaluation of radiation effects in materials, particularly for radiotherapy purposes) that are ~10% lower than what is expected from other measurements and theories. In our simulations, instead of treating the stopping power as an unknown free parameter to be determined, we use as input the electronic stopping power accurately calculated within the dielectric formalism. We take into account in the simulations the different interactions that each projectile can experience when moving through the target, such as electronic stopping, nuclear scattering or electron charge-exchange processes. The detailed geometry of the target is also accounted for. We find that our simulated energy distributions are in excellent agreement with the published measurements when the diameter of the cylindrical targets is slightly reduced, what is compatible with the potential evaporation of the liquid jets. On the basis of such an excellent agreement, we validate the accuracy of the model we use to calculate electronic excitation cross sections for ions in condensed matter in its range of applicability (particularly the electronic stopping power) needed for charged particle transport models, and we offer a consistent, but alternative, interpretation for these experiments on ion irradiation of cylindrical targets.

Graphical abstract

Keywords

Topical issue 

References

  1. 1.
    M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Solov’yov, Nanoscale Insights into Ion-beam Cancer Therapy (Springer International Publishing, Switzerland, 2017)Google Scholar
  3. 3.
    J.C. Chancellor, R.S. Blue, K.A. Cengel, S.M. Auñón-Chancellor, K.H. Rubins, H.G. Katzgraber, A.R. Kennedy, Microgravity 4, 1 (2018)CrossRefGoogle Scholar
  4. 4.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, Interaction of Radiation with Matter (CRC Press, Boca Raton, 2012)Google Scholar
  7. 7.
    D. Emfietzoglou, H. Nikjoo, Radiat. Res. 163, 98 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R. Garcia-Molina, I. Abril, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Phys. Med. Biol. 56, 6475 (2011)CrossRefGoogle Scholar
  9. 9.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Dingfelder, Appl. Radiat. Isot. 83, 142 (2014)CrossRefGoogle Scholar
  11. 11.
    P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    D. Emfietzoglou, G. Papamichael, H. Nikjoo, Radiat. Res. 188, 355 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    P. de Vera, R. Garcia-Molina, J. Phys. Chem. C 123, 2075 (2019)CrossRefGoogle Scholar
  14. 14.
    A. Itoh, M. Kaneda, S. Satoh, K. Ishii, H. Tsuchida, Nucl. Instrum. Methods Phys. Res. B 245, 76 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Shimizu, M. Kaneda, T. Hayakawa, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 267, 2667 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Itoh, M. Kaneda, M. Shimizu, T. Hayakawa, T. Iriki, H. Tsuchida, Vacuum 84, 999 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shimizu, T. Hayakawa, M. Kaneda, H. Tsuchida, A. Itoh, Vacuum 84, 1002 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    T. Siiskonen, H. Kettunen, K. Peräjärvi, A. Javanainen, M. Rossi, W.H. Trzaska, J. Turunen, A. Virtanen, Phys. Med. Biol. 56, 2367 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954)Google Scholar
  20. 20.
    M. Dingfelder, M. Inokuti, H.G. Paretzke, Radiat. Phys. Chem. 59, 255 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    M. Dingfelder, Radiat. Protect. Dosim. 99, 23 (2002)CrossRefGoogle Scholar
  22. 22.
    D. Emfietzoglou, M. Moscovitch, Nucl. Instrum. Methods Phys. Res. B 209, 239 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    D. Emfietzoglou, Radiat. Phys. Chem. 66, 373 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Besemer, H. Paganetti, B. Bednarz, Phys. Med. Biol. 58, 887 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Paul, Adv. Quantum Chem. 65, 39 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Garcia-Molina, I. Abril, P. de Vera, H. Paul, Nucl. Instrum. Methods Phys. Res. B 299, 51 (2013)ADSCrossRefGoogle Scholar
  27. 27.
  28. 28.
    M. Kaneda, S. Sato, M. Shimizu, Z. He, K. Ishii, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 256, 97 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Shimizu, T. Hayakawa, K. Hisano, M. Kaneda, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 269, 810 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, in Fast ion-atom and ion-molecule collisions, edited by D. Belkic (World Scientific Publishing Company, Singapore, 2012), Chap. 8Google Scholar
  31. 31.
    P. Bauer, W. Käferböck, V. Nečas, Nucl. Instrum. Methods Phys. Res. B 93, 132 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    W.A. Wenzel, W. Whaling, Phys. Rev. 87, 499 (1952)ADSCrossRefGoogle Scholar
  33. 33.
    D.A. Andrews, G. Newton, J. Phys. D 10, 845 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter (SRIM Co., Chester, Maryland, 2008)Google Scholar
  35. 35.
    ICRU, Stopping Powers and Ranges for Protons and Alpha Particles, International Commission on Radiation Units and Measurements, Report 49, Bethesda, Maryland, 1993Google Scholar
  36. 36.
    I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, D. Emfietzoglou, Adv. Quantum Chem. 65, 129 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    S. Heredia-Avalos, I. Abril, C.D. Denton, J.C. Moreno-Marn, R. Garcia-Molina, J. Phys.: Condens. Matter 19, 466205 (2007)ADSGoogle Scholar
  39. 39.
    P.L. Grande, G. Schiwietz, CasP - Convolution approximation for swift particles, version 3.1 (2005), code available at https://www.helmholtz-berlin.de/people/gregor-schiwietz/casp_en.html
  40. 40.
    N.D. Mermin, Phys. Rev. B 1, 2362 (1970)ADSCrossRefGoogle Scholar
  41. 41.
    H. Hayashi, N. Watanabe, Y. Udagawa, C.-C. Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    P. de Vera, I. Abril, R. Garcia-Molina, Radiat. Res. 190, 282 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    I. Abril, P. de Vera, R. Garcia-Molina, I. Kyriakou, D. Emfietzoglou, Nucl. Instrum. Methods Phys. Res. B 352, 176 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    T. Kondow, F. Mafuné, Annu. Rev. Phys. Chem. 51, 731 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    M. Faubel, S. Schlemmer, J.P. Toennies, Z. Phys, D 10, 269 (1988)Google Scholar
  46. 46.
    C.D. Denton, I. Abril, J.C. Moreno-Marn, S. Heredia-Avalos, R. Garcia-Molina, Phys. Status Solidi B 245, 1498 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    S. Limandri, P. de Vera, R.C. Fadanelli, L.C.C.M. Nagamine, A. Mello, R. Garcia-Molina, M. Behar, I. Abril, Phys. Rev. E 89, 022703 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    H. Paul, Stopping Power of Matter for Ions, Graphs, Data, Comments and Programs, https://www-nds.iaea.org/stopping/
  50. 50.
    A. Akhavan-Rezayat, R.B.J. Palmer, J. Phys. E 13, 877 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    A.K.M.M. Haque, A. Mohammadi, H. Nikjoo, Radiat. Protect. Dosim. 13, 71 (1985)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MBN Research CenterFrankfurt am MainGermany
  2. 2.Departamento de Física – Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de MurciaMurciaSpain
  3. 3.Departament de Física Aplicada, Universitat d’AlacantAlacantSpain

Personalised recommendations