Advertisement

Thermal study of the atomic ratio effect on a cylindrical and an ellipsoidal shaped HgTlI discharge lamps

  • Besma FerjaniEmail author
  • Mohamed Bechir Ben Hamida
Regular Article
  • 10 Downloads

Abstract

The purpose of this paper is to study the thermal behavior of a high-intensity HgTlI lamp in a cylindrical shape, compared to an ellipsoidal lamp during variations of the mercury to thallium atomic ratio. For this, we developed a chemical model under Local Thermodynamic Equilibrium conditions. Then, it was coupled with a three-dimensional code, time-dependent that solves the systems of equations for the mass, energy and momentum, as well as the equation of Laplace for the plasma using Comsol Multiphysics coupled with Matlab. Based on the variations of the mercury to thallium ratio, we analyzed the temperature fields, the heat conduction flow, the convective flow and the accumulation of mercury behind the electrodes for both of the shapes in different mercury to thallium ratios.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    K. Charrada, G. Zissis, J. Phys. D: Appl. Phys. 33, 968 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K. Charrada, G. Zissis, M. Stambouli, J. Phys. D: Appl. Phys. 29, 753 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    L.M. Beks, M. Haverlag, J.J.A.M. van der Mullen, J. Phys. D: Appl. Phys. 41, 125209 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wendelstorf, Two-temperature, two-dimentional modeling of cathode-plasma interaction in electric arcs, in Proc. ICPIG XXIV Int. Conf. Phenom. Ionized Gases, Warsaw, Poland, 1999 (2000), Vol. 2, 227–228Google Scholar
  5. 5.
    P. Flesch, M. Neiger, IEEE Trans. Plasma Sci. 27, 18 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    E. Fischer, Philips J. Res. 42, 58 (1987)Google Scholar
  7. 7.
    M.B. Ben Hamida, K. Charrada, Phys. Plasmas 18, 063506 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M.B. Ben Hamida, K. Charrada, Phys. Plasmas 19, 063504 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K.C. Paul, T. Takemura, T. Hiramoto, M. Yoshioka, T. Igarashi, IEEE Trans. Plasma Sci. 34, 254 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Bouaoun, H. Elloumi, L. Troudi, A. Chammam, K. Charrada, M. Stambouli, J. Phys. D: Appl. Phys. 43, 185205 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Waymouth, Electric discharge lamps (MIT press, Cambridge, 1971)Google Scholar
  12. 12.
    M.B. Ben Hamida, S.H. Salah, K. Charrada, Eur. Phys. J. D 69, 206 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Stambouli, K. Charrada, J.-J. Damelincourt, IEEE Trans. Plasma Sci. 23, 138 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Zollweg, J.J. Lowke, R.W. Liebermann, J. Appl. Phys. 46, 3828 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    M.M. Bouaoun, H. Elloumi, K. Charrada, M.B. El Hadj Rhouma, M. Stambouli, J. Phys. D: Appl. Phys. 38, 4053 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    W. Elenbaas, The high pressure mercury vapor discharge (North Holland, Amsterdam, The Netherlands, 1951)Google Scholar
  17. 17.
    M.B. Ben Hamida, K. Charrada, Eur. Phys. J. D 70, 7 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Tauziede, Thèse de 3ème cycle (Université Paul Sabatier, Toulouse, 1986)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Unit of Ionized Backgrounds and Reagents Studies (UEMIR), Preparatory Institute for Engineering Studies of Monastir (IPEIM), University of MonastirMonastirTunisia
  2. 2.College of Engineering, Chemical Engineering Department, Hail UniversityHail CitySaudi Arabia

Personalised recommendations