Advertisement

The effect of non-Markovianity on the measurement-based uncertainty

  • Peng-Fei Chen
  • Liu Ye
  • Dong WangEmail author
Regular Article
  • 25 Downloads

Abstract

The uncertainty principle is one of fundamental traits in quantum mechanics, which essentially lies at the heart of quantum theory. The principle manifests that the measurement outcomes with respect to two incompatible observables cannot be predicted accurately. In fact, it can be expressed in terms of entropic measurement in the quantum information theory, since Berta et al. have indicated that uncertainty’s bound can be reduced when considering a particle as a quantum memory correlated with the particle to be measured. In this paper, we investigate the dynamical features of the entropic uncertainty within the non-Markovian regimes, and also compare several proposed bounds in such a scenario. We find that the uncertainty exhibits a non-monotonic behavior, and certify that the lower bound proposed by Adabi et al. is optimized. Besides, Stimulatingly, it turns out that the lower bound is not fully anti-correlated with the quantum correlation of the system, and associated with the A’s minimal conditional entropy \( {S}_{\mathrm{min}}^{A|B}\). Besides, we offer a possible physical explanation for this behavior. Noteworthily, we propose a simple and working approach to manipulate the magnitude of the measurement uncertainty via a type of non-unitary operations.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    W. Heisenberg, Z. Phys. 43, 172 (1927)ADSCrossRefGoogle Scholar
  2. 2.
    H.P. Robertson, Phys. Rev. 34, 163 (1929)ADSCrossRefGoogle Scholar
  3. 3.
    E.H. Kennard, Z. Phys. 44, 326 (1927)ADSCrossRefGoogle Scholar
  4. 4.
    K. Kraus, Phys. Rev. D 35, 3070 (1987)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Bialynicki-Birula, AIP. Conf. Proc. 889, 52 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D. Deutsch, Phys. Rev. Lett. 50, 631 (1983)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Liu, L.Z. Mu, H. Fan, Phys. Rev. A 91, 042133 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L. Rudnicki, Phys. Rev. A 91, 032123 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Rastegin, Ann. Phys. (Berlin) 528, 835 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T. Pramanik, S. Mal, A.S. Majumdar, Quantum Inf. Process. 15, 981 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Xiao, K. Wang, X. Zhan, Z. Bian, J. Li, Y. Zhang, P. Xue, A.K. Pati, Opt. Exp. 25, 17904 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    H. Maassen, J.B.M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nat. Phys. 6, 659 (2010)CrossRefGoogle Scholar
  14. 14.
    C.F. Li, J.S. Xu, X.Y. Xu, K. Li, G.C. Guo, Nat. Phys. 7, 752 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Prevedel, D.R. Hamel, R. Colbeck, K. Fisher, K.J. Resch, Nat. Phys. 7, 757 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Tomamichel, R. Renner, Phys. Rev. Lett. 106, 110506 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Renes, J.C. Boileau, Phys. Rev. Lett. 103, 020402 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    L. Li, Q.W. Wang, S.Q. Shen, M. Li, Quantum Inf. Process. 16, 188 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Z.Y. Zhang, D.X. Wei, J.M. Liu, Laser Phys. Lett. 15, 065207 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yu, M.F. Fang, Quantum Inf. Process. 16, 213 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    H.M. Zou, M.F. Fang, B.Y. Yang, Y.N. Guo, W. He, S.Y. Zhang, Phys. Scr. 89, 115101 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhang, Y. Zhang, C.S. Yu, Sci. Rep. 5, 11701 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhang, Y. Zhang, C.S. Yu, Quantum Inf. Process. 14, 2239 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Hertz, L. Vanbever, N.J. Cerf, Phys. Rev. A 97, 012111 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    D. Wang, F. Ming, A.J. Huang, W.Y. Sun, L. Ye, Laser Phys. Lett. 14, 095204 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    D. Wang, A.J. Huang, R.D. Hoehn, F. Ming, W.Y. Sun, J.D. Shi, L. Ye, S. Kais, Sci. Rep. 7, 1066 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    R. Schwonnek, L. Dammeier, R.F. Werner, Phys. Rev. Lett. 119, 170404 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Z.M. Huang, Quantum Inf. Process. 17, 73 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    X. Zheng, G.F. Zhang, Quantum Inf. Process. 16, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J.Q. Li, L. Bai, J.Q. Liang, Quantum Inf. Process. 17, 206 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    J. Schneeloch, G.A. Howland, Phys. Rev. A 97, 042338 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    D. Wang, F. Ming, A.J. Huang, W.Y. Sun, J.D. Shi, L. Ye, Laser Phys. Lett. 14, 055205 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Huang, W.C. Gan, Y.L. Xiao, F.W. Shu, M.H. Yung, Eur. Phys. J. C 78, 545 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    A.J. Huang, D. Wang, J.M. Wang, J.D. Shi, W.Y. Sun, L. Ye, Quantum Inf. Process. 16, 204 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    D. Kurzyk, Ł. Pawela, Z. Puchała, Quantum Inf. Process. 17, 193 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    D. Wang, W.N. Shi, R.D. Hoehn, F. Ming, W.Y. Sun, S. Kais, L. Ye, Ann. Phys. (Berlin) 530, 1800080 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Y.N. Guo, M.F. Fang, K. Zeng, Quantum Inf. Process. 17, 187 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    P.J. Coles, R. Colbeck, L. Yu, M. Zwolak, Phys. Rev. Lett. 108, 210405 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    A.K. Pati, M.M. Wilde, A.R.U. Devi, A.K. Rajagopal, Phys. Rev. A 86, 042105 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    M.L. Hu, H. Fan, Phys. Rev. A 88, 014105 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    M.L. Hu, X.Y. Hu, J.C. Wang, Y. Peng, Y.R. Zhang, H. Fan, Phys. Rep. 762–764, 1 (2018)Google Scholar
  43. 43.
    S.L. Luo, Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    F. Adabi, S. Salimi, S. Haseli, Phys. Rev. A 93, 062123 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Z.X. Man, Y.J. Xia, R. Lo Franco, Sci. Rep. 5, 13843 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Z.X. Man, Y.J. Xia, R. Lo Franco, Phys. Rev. A 92, 012315 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    A. Mortezapour, M.A. Borji, R. Lo Franco, Laser Phys. Lett. 14, 055201 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    R. Lo Franco, New J. Phys. 17, 081004 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    S.C. Wang, Z.W. Yu, W.J. Zou, X.B. Wang, Phys. Rev. A 89, 022318 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    X. Xiao, Y.L. Li, Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics & Material Science, Anhui UniversityHefeiP.R. China
  2. 2.CAS Key Laboratory of Quantum Information, University of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations