Electron-impact excitations of highly charged tungsten ions and polarization study of their successive photon decay

  • Neelam Shukla
  • Priti
  • Lalita Sharma
  • Rajesh SrivastavaEmail author
Regular Article


Fully relativistic distorted wave theory has been utilized to study the electron-impact excitation of highly charged tungsten ions viz. Y-like (W35+), Sr-like (W36+), Rb-like (W37+) and Br-like (W39+). Electric dipole transitions pertaining to n = 4 → n′ = 4 states have been considered in these four ions. The electron excitation cross-sections are calculated for these ions in the wide range of electron-impact energies from excitation threshold to 20 keV. The required relativistic bound states wave functions for the initial and excited states of the ions are obtained using GRASP2k code. The accuracy of the computed wave functions is ascertained by comparing the calculated energies and oscillator strengths for the considered transitions with the available theoretical and experimental results. For the direct application of the cross-sections to the plasma modelling our calculated cross-sections are fitted to suitable analytical expressions. Further, the degree of linear polarization of the emitted photons due to the decay of the electron from the excited tungsten ions to their respective ground states is also calculated using density matrix theory. There are no previous calculations available for the cross-sections and polarizations to compare with our results of these ions.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    V. Philipps, J. Nucl. Mater. 415, S2 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    R. Causey, K. Wilson, T. Venhaus, W.R. Wampler, J. Nucl. Mater. 266, 467 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    J. Clementson, P. Beiersdorfer, E.W. Magee, H.S. McLean, R.D. Wood, J. Phys. B At. Mol. Opt. Phys. 43, 144009 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Clementson, P. Beiersdorfer, T. Lennartsson, AIP Conf. Proc. 1525, 78 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    K. Ikeda, Nucl. Fusion 50, 014002 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    A. Loarte, B. Lipschultz, A.S. Kukushkin, G.F. Matthews, P.C. Stangeby, N. Asakura, G.F. Counsell, G. Federici, A. Kallenbach, K. Krieger, Nucl. Fusion 47, S203 (2007)CrossRefGoogle Scholar
  7. 7.
    S.B. Utter, P. Beiersdorfer, E. Trabert, Can. J. Phys. 80, 1503 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Kramida, J. Reader, At. Data Nucl. Data Tables 92, 457 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Kramida, T. Shirai, At. Data Nucl. Data Tables 95, 305 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Rzadkiewicz, Y. Yang, K. Kozio, M.G.O. Mullane, A. Patel, J. Xiao, K. Yao, Y. Shen, D. Lu, R. Hutton, Phys. Rev. A 97, 052501 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    T. Lennartsson, J. Clementson, P. Beiersdorfer, Phys. Rev. A 87, 1 (2013)CrossRefGoogle Scholar
  12. 12.
    K.B. Fournier, L. Livermore, At. Data Nucl. Data Tables 68, 1 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    X.L. Guo, M.C. Li, C.Y. Zhang, K. Wang, S. Li, Z.B. Chen, Y.M. Liu, H.J. Zhang, R. Hutton, C.Y. Chen, J. Quant. Spectrosc. Radiat. Transf. 210, 204 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Priti, Dipti, L. Sharma, R. Srivastava, Atoms 3, 53 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Priti, L. Sharma, R. Srivastava, Eur. Phys. J. D 71, 100 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Dipti, T. Das, L. Sharma, R. Srivastava, Can. J. Phys. 93, 888 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    T. Das, L. Sharma, R. Srivastava, Phys. Scr. 86, 035301 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    N. Shukla, T. Das, R. Srivastava, J. Quant. Spectrosc. Radiat. Transf. 222–223, 247 (2019)CrossRefGoogle Scholar
  19. 19.
    A.A. El-Maaref, M.M.A. Halaka, M. Tammam, E.R. Shaaban, E.S. Yousef, J. Phys. B 52, 065202 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    T. Das, Y.A. Podpaly, J. Reader, J.D. Gillaspy, Y. Ralchenko, Eur. Phys. J. D 72, 124 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    L. Sharma, A. Surzhykov, R. Srivastava, S. Fritzsche, Phys. Rev. A 83, 1 (2011)CrossRefGoogle Scholar
  22. 22.
    V.S.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions (Springer Science & Business Media, 2000)Google Scholar
  23. 23.
    L. Sharma, A. Surzhykov, M.K. Inal, S. Fritzsche, Phys. Rev. A 81, 1 (2010)CrossRefGoogle Scholar
  24. 24.
    P. Jönsson, G. Gaigalas, J. Bieroń, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    C.J. Bostock, D.V. Fursa, I. Bray, Phys. Rev. A 80, 1 (2009)CrossRefGoogle Scholar
  26. 26.
    R.E. Clark, Atomic And Plasma – Material Interaction Data For Fusion IAEA Safety Related Publication (International Atomic Energy Agency, 2007)Google Scholar
  27. 27.
    P. Bogdanovich, R. Kisielius, At. Data Nucl. Data Tables 100, 1593 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    P. Bogdanovich, R. Kisielius, At. Data Nucl. Data Tables 99, 580 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    P. Bogdanovich, R. Kisielius, At. Data Nucl. Data Tables 98, 557 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    C.F. Fischer, Phys. Rev. A 85, 042501 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    G. Gaigalas, P. Rynkun, C.F. Fischer, Phys. Rev. A 91, 022509 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Seaton, Proc. Phys. Soc. 79, 1105 (1962)ADSCrossRefGoogle Scholar
  33. 33.
    H. Van Regemorter, Am. Astron. Soc. 136, 906 (1962)ADSGoogle Scholar
  34. 34.
    S. Aggarwal, A.K.S. Jha, M. Mohan, Can. J. Phys. 91, 394 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    K.M. Aggarwal, F.P. Keenan, At. Data Nucl. Data Tables 100, 1399 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Neelam Shukla
    • 1
  • Priti
    • 1
  • Lalita Sharma
    • 1
  • Rajesh Srivastava
    • 1
    Email author
  1. 1.Indian Institute of Technology Roorkee (IITR)RoorkeeIndia

Personalised recommendations