Advertisement

Weak classicality in coupled N-level quantum systems

  • Radha Pyari SandhirEmail author
  • V. RavishankarEmail author
Regular Article

Abstract

The notion of “weak classical limit” for coupled N-level quantum systems as N → ∞ is introduced to understand the precise sense in which one attains classicality. There exists proofs that a system becomes classical at large N [1, 2]. On the other hand, it is known that non-locality and entanglement, the two hallmarks of non-classicality, thrive even as N → ∞. We reconcile these results in this paper by showing that so called classicality is not so much an inherent property of the system, as it is a consequence of limited experimental resources. Our focus is largely on non-locality, for which we study the Bell-CHSH and CGLMP inequalities for N-level systems.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    L.G. Yaffe, Rev. Mod. Phys. 54, 407 (1982)CrossRefGoogle Scholar
  2. 2.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    N.D. Mermin, Phys. Rev. D 22, 356 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Peres, Phys. Rev. A 46, 4413 (1992)CrossRefGoogle Scholar
  5. 5.
    M. Ardehali, Phys. Rev. D 44, 3336 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Ardehali, Phys. Rev. A 46, 5375 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, A. Zeilinger, Phys. Rev. Lett. 85, 4418 (2000)CrossRefGoogle Scholar
  8. 8.
    D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. Lett. 88, 040404 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Fu, Phys. Rev. Lett. 92, 130404 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Braunstein, A. Mann, M. Revzen, Phys. Rev. Lett. 68, 3259 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Popescu, D. Rohrlich, Phys. Lett. A 169, 411 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.S. Bell, Physics 1, 195 (1964)CrossRefGoogle Scholar
  13. 13.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)CrossRefGoogle Scholar
  14. 14.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)CrossRefGoogle Scholar
  15. 15.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th edn. (Cambridge University Press, New York, NY, USA, 2011)Google Scholar
  16. 16.
    V. Ravishankar, G. Ramachandran, Mod. Phys. Lett. A 01, 333 (1986)CrossRefGoogle Scholar
  17. 17.
    V. Ravishankar, G. Ramachandran, Phys. Rev. C 35, 62 (1987)CrossRefGoogle Scholar
  18. 18.
    W.H. Zurek, in Proc. of the XXII GIFT International Seminar on Theoretical Physics (World Scientific, Singapore, 1991)Google Scholar
  19. 19.
    M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996)CrossRefGoogle Scholar
  20. 20.
    W.H. Zurek, arXiv:quant-ph/0306072 (2003)
  21. 21.
    J. Kofler, Č. Brukner, Phys. Rev. Lett. 99, 180403 (2007)CrossRefGoogle Scholar
  22. 22.
    I.P. Mendaš, Phys. Rev. A 71, 034103 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R.P. Sandhir, S. Adhikary, V. Ravishankar, Quantum Inf. Process. 16, 263 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Gisin, A. Peres, Phys. Lett. A 162, 15 (1992)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Wódkiewicz, Phys. Rev. A 52, 3503 (1995)CrossRefGoogle Scholar
  26. 26.
    K. Banaszek, K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998)CrossRefGoogle Scholar
  27. 27.
    T. Durt, D. Kaszlikowski, M. Żukowski, Phys. Rev. A 64, 024101 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Computer ScienceDayalbagh Educational InstituteAgraIndia
  2. 2.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations