Advertisement

Determination of electron inelastic mean free path of three transition metals from reflection electron energy loss spectroscopy spectrum measurement data

  • Lihao Yang
  • Károly Tőkési
  • Bo Da
  • Zejun DingEmail author
Regular Article
  • 35 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

The energy loss functions (ELFs) of three transition metals (Cr, Co and Pd) have been derived from reflection electron energy loss spectroscopy spectrum with a theoretical analysis of the measured data [Xu et al., J. Appl. Phys. 123, 043306 (2018)]. In this work, we update our previous ELFs in a wider photon energy region (0–200 eV) with a better accuracy, which is verified by sum rules and a root-mean-square deviation. The electron inelastic mean free paths (IMFPs) of Cr, Co and Pd have been calculated with the obtained ELFs by adopting a dielectric response theory. We employ both the single-pole approximation and full Penn algorithm for the calculation of IMFPs, and the calculated results are compared with other references.

Graphical abstract

References

  1. 1.
    A. Jablonski, Surf. Interface Anal. 15, 559 (1990) CrossRefGoogle Scholar
  2. 2.
    C.J. Powell, A. Jablonski, J. Phys. Chem. Ref. Data 28, 19 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    A. Jablonski, Surf. Sci. 151, 166 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    W.S.M. Werner, C. Tomastik, T. Cabela, G. Richter, H. Störi, Surf. Sci. 470, L123 (2000) CrossRefGoogle Scholar
  5. 5.
    S. Tanuma, T. Shiratori, T. Kimura, K. Goto, S. Ichimura, C.J. Powell, Surf. Interface Anal. 37, 833 (2005) CrossRefGoogle Scholar
  6. 6.
    D.R. Penn, Phys. Rev. B 35, 482 (1987) ADSCrossRefGoogle Scholar
  7. 7.
    S.F. Mao, Y.G. Li, R.G. Zeng, Z.J. Ding, J. Appl. Phys. 104, 114907 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    S. Tanuma, C.J. Powell, D.R. Penn. Surf. Interface Anal. 43, 689 (2011) CrossRefGoogle Scholar
  9. 9.
    H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 47, 871 (2015) CrossRefGoogle Scholar
  10. 10.
    Y. Sun, H. Xu, B. Da, S.F. Mao, Z.J. Ding, Chin. J. Chem. Phys. 29, 663 (2016) CrossRefGoogle Scholar
  11. 11.
    B. Da, Y. Sun, S.F. Mao, Z.M. Zhang, H. Jin, H. Yoshikawa, S. Tanuma, Z.J. Ding, J. Appl. Phys. 113, 214303 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    H. Xu, B. Da, J. Tóth, K. Tőkési, Z.J. Ding, Phys. Rev. B 95, 195417 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    H. Xu, L.H. Yang, B. Da, J. Tóth, K. Tőkési, Z.J. Ding, Nucl. Instrum. Meth. Phys. Res. B 406, 475 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    L.H. Yang, M. Menyhard, A. Sulyok, K. Tőkési, Z.J. Ding, Appl. Surf. Sci. 456, 999 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    H. Xu, L.H. Yang, J. Tóth, K. Tőkési, B. Da, Z.J. Ding, J. Appl. Phys. 123, 043306 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    N.F. Mott, Proc. R. Soc. Lond. A 124, 425 (1929) ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975) [Erratum: Comp. Phys. Commun. 13, 71 (1977)] ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Furness, I.E. McCarthy, J. Phys. B 6, 2280 (1973) ADSCrossRefGoogle Scholar
  19. 19.
    F. Salvat, A. Jablonski, C.J. Powell, Comp. Phys. Commun. 165, 157 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    A. Jablonski, F. Salvat, C.J. Powell, J. Phys. Chem. Ref. Data 33, 409 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Y.C. Li, Y.H. Tu, C.M. Kwei, C.J. Tung, Surf. Sci. 589, 67 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977) ADSCrossRefGoogle Scholar
  23. 23.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Kövér, D. Varga, I. Cserny, J. Tóth, K. Tőkési, Surf. Interface Anal. 19, 9 (1992) CrossRefGoogle Scholar
  25. 25.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1991) Google Scholar
  26. 26.
    B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 181 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    W.S.M. Werner, K. Glantschnig, C. Ambrosch-Draxl, J. Phys. Chem. Ref. Data 38, 1013 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    D. Tahir, J. Kraaer, S. Tougaard, J. Appl. Phys. 115, 243508 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97, UCRL-50400, Vol. 6, Rev. 5, Sep 19, 1997 Google Scholar
  30. 30.
    G. Gergely, M. Menyhárd, K. Péntek, A. Sulyok, A. Jablonski, B. Lesiak, Cs. Darόczi, Surf. Sci. 331, 1203 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    M. Krawczyk, L. Zommer, B. Lesiak, A. Jablonski, Surf. Interface Anal. 25, 356 (1997) CrossRefGoogle Scholar
  32. 32.
    C.M. Kwei, Y.F. Chen, C.J. Tung, J.P. Wang, Surf. Sci. 293, 202 (1993) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lihao Yang
    • 1
  • Károly Tőkési
    • 2
    • 3
  • Bo Da
    • 4
  • Zejun Ding
    • 1
    Email author
  1. 1.Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  3. 3.ELI-ALPS, ELI-HU Non-Profit, Ltd.SzegedHungary
  4. 4.Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS)Sengen, Tsukuba, IbarakiJapan

Personalised recommendations