Rearrangement of electron shells and interchannel interaction in the K photoabsorption of Ne
- 9 Downloads
Abstract
A detailed theoretical analysis of the 1s photoionization of neon is presented. It is found that the most significant many-electron correlation in computing photoionization of inner shells is the rearrangement of the outer shells caused by the inner vacancy. Further noticeable effects are: (i) the polarization of the ion core by the outgoing photoelectron and (ii) the coherent effect of double excitation/ionization. The core polarization increases the photoionization cross section by about 10% at the 1s threshold, and the coherent excitation results in further increases by about 5%. Incoherent excitation of the satellite channel leads to an additional 10% increase in the photoabsorption cross section in the double-ionization threshold region.
Graphical abstract
References
- 1.E. Gatuzz, J. García, T.R. Kallman, C. Mendoza, T.W. Gorczyca, Astrophys. J. 800, 29 (2015) ADSCrossRefGoogle Scholar
- 2.A. Müller, D. Bernhardt, A. Borovik, Jr. T. Buhr, J. Hellhund, K. Holste, A.L.D. Kilcoyne, S. Klumpp, M. Martins, S. Ricz et al., Astrophys. J. 836, 166 (2017) ADSCrossRefGoogle Scholar
- 3.V.L. Sukhorukov, V.F. Demekhin, V.V. Timoshevskaya, S.V. Lavrentev, Opt. Spectrosc. (USSR) 47, 407 (1979) Google Scholar
- 4.M. Coreno, L. Avaldi, R. Camilloni, K.C. Prince, M. de Simone, J. Karvonen, R. Colle, S. Simonucci, Phys. Rev. A 59, 2494 (1999) ADSCrossRefGoogle Scholar
- 5.M. Kutzner, M. Rose, J. Phys. B: At. Mol. Opt. Phys. 32, 123 (1999) ADSCrossRefGoogle Scholar
- 6.T.W. Gorczyca, Phys. Rev. A 61, 024702 (2000) ADSCrossRefGoogle Scholar
- 7.J.M. Esteva, B. Gauthe, P. Dhez, R.C. Karnatak, J. Phys. B: At. Mol. Phys. 16, L263 (1983) ADSCrossRefGoogle Scholar
- 8.I.H. Suzuki, N. Saito, J. Electron Spectrosc. Relat. Phenom. 129, 71 (2003) CrossRefGoogle Scholar
- 9.R.J. Liefeld, Appl. Phys. Lett. 7, 276 (1965) ADSCrossRefGoogle Scholar
- 10.V.L. Sukhorukov, A.N. Hopersky, I.D. Petrov, V.A. Yavna, V.F. Demekhin, J. Phys. 48, 1677 (1987) CrossRefGoogle Scholar
- 11.V. Sukhorukov, I. Petrov, B. Lagutin, A. Ehresmann, K.H. Schartner, H. Schmoranzer, Phys. Rep., https://doi.org/10.1016/j.physrep.2018.10.004
- 12.K. Prince, L. Avaldi, R. Sankari, R. Richter, M. de Simone, M. Coreno, J. Electron Spectrosc. Relat. Phenom. 144, 43 (2005) CrossRefGoogle Scholar
- 13.V.L. Sukhorukov, A.N. Hopersky, I.D. Petrov, J. Phys. II 1, 501 (1991) Google Scholar
- 14.I.D. Petrov, V.L. Sukhorukov, H. Hotop, J. Phys. B: At. Mol. Opt. Phys. 32, 973 (1999) ADSCrossRefGoogle Scholar
- 15.R. Deslattes, E. Kessler, Jr., P. Indelicato, NIST XrayTrans Team, X-Ray Transition Energies (version 1.2). [Online] (National Institute of Standards and Technology, Gaithersburg, MD, 2005), DOI: https://doi.org/10.18434/T4859Z
- 16.R. Kau, I.D. Petrov, V.L. Sukhorukov, H. Hotop, Z. Phys. D 39, 267 (1997) ADSCrossRefGoogle Scholar
- 17.M.Y. Amusia, Atomic Photoeffect, 1st edn. (Plenum Press, New York, 1990) Google Scholar
- 18.V.L. Sukhorukov, I.D. Petrov, M. Schäfer, F. Merkt, M.W. Ruf, H. Hotop, J. Phys. B: At. Mol. Opt. Phys. 45, 092001 (2012) ADSCrossRefGoogle Scholar
- 19.C. Bauche-Arnoult, J. Bauche, M. Klapisch, Phys. Rev. A 20, 2424 (1979) ADSCrossRefGoogle Scholar
- 20.C. Bauche-Arnoult, J. Bauche, M. Klapisch, Phys. Rev. A 25, 2641 (1982) ADSCrossRefGoogle Scholar
- 21.J. Bauche, C. Bauche-Arnoult, M. Klapisch, Adv. At. Mol. Phys. 23, 131 (1988) ADSCrossRefGoogle Scholar
- 22.G. Howat, J. Phys. B: At. Mol. Phys. 11, 1589 (1978) ADSCrossRefGoogle Scholar