Advertisement

Improving the lower bound to the secret-key capacity of the thermal amplifier channel

  • Gan Wang
  • Carlo Ottaviani
  • Hong Guo
  • Stefano PirandolaEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We consider the noisy thermal amplifier channel, where signal modes are amplified together with environmental thermal modes. We focus on the secret-key capacity of this channel, which is the maximum amount of secret bits that two remote parties can generate by means of the most general adaptive protocol, assisted by unlimited and two-way classical communication. For this channel only upper and lower bounds are known, and in this work we improve the lower bound. We consider a protocol based on squeezed states and homodyne detections, in both direct and reverse reconciliation. In particular, we assume that trusted thermal noise is mixed on beam splitters controlled by the parties in a way to assist their homodyne detections. The new improved lower bounds to the secret-key capacity are obtained by optimizing the key rates over the variance of the trusted noise injected, and the transmissivity of the parties’ beam splitters. Our results confirm that there is a separation between the coherent information of the thermal amplifier channel and its secret key capacity.

Graphical abstract

References

  1. 1.
    J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018) Google Scholar
  2. 2.
    M. Hayashi, Quantum Information Theory: Mathematical Foundation (Springer-Verlag, Berlin, Heidelberg, 2017) Google Scholar
  3. 3.
    W.K. Wootters, W.H Zurek, Nature 299, 802 (1982) ADSCrossRefGoogle Scholar
  4. 4.
    V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    C. Weedbrook et al., Rev. Mod. Phys. 84, 621 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    T. Serikawa, A. Furusawa, https://doi.org/arXiv:1803.06462 (2018)
  8. 8.
    F. Grosshans et al., Nature 421, 238 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    C. Weedbrook et al., Phys. Rev. Lett. 93, 170504 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Lance et al., Phys. Rev. Lett. 95, 180503 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    C. Silberhorn, T.C. Ralph, N. Lütkenhaus, G. Leuchs, Phys. Rev. Lett. 89, 167901 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    R. García-Patrón, N.J. Cerf, Phys. Rev. Lett. 102, 130501 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    R. Filip, Phys. Rev. A 77, 022310 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    V.C. Usenko, R. Filip, Phys. Rev. A 81, 022318 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    C. Weedbrook, S. Pirandola, T.C. Ralph, Phys. Rev. Lett. 105, 110501 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    C. Weedbrook, S. Pirandola, S. Lloyd, T.C. Ralph, Phys. Rev. A 86, 022318 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Jacobsen, T. Gehring, U.L. Andersen, Entropy 17, 4654 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    V.C. Usenko, R. Filip, Entropy 18, 20 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    V.C. Usenko, F. Grosshans, Phys. Rev. A 92, 062337 (2015) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Leverrier, F. Grosshans, P. Grangier, Phys. Rev. A 81, 062343 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    A. Leverrier, Phys. Rev. Lett. 114, 070501 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    F. Furrer et al., Phys. Rev. Lett. 109, 100502 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    F. Furrer et al., Phys. Rev. Lett. 112, 019902(E) (2014) ADSCrossRefGoogle Scholar
  24. 24.
    S. Pirandola, S. Mancini, S. Lloyd, S.L. Braunstein, Nat. Phys. 4, 726 (2008) CrossRefGoogle Scholar
  25. 25.
    C. Ottaviani, S. Mancini, S. Pirandola, Phys. Rev. A 92, 062323 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    C. Ottaviani, S. Pirandola, Sci. Rep. 6, 22225 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    C. Weedbrook, C. Ottaviani, S. Pirandola, Phys. Rev. A 89, 012309 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    J.H. Shapiro, Phys. Rev. A 80, 022320 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Q. Zhuang, Z. Zhang, J. Dove, F.N.C. Wong, J.H. Shapiro, Phys. Rev. A 94, 012322 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    Q. Zhuang, Z. Zhang, N. Lütkenhaus, J.H. Shapiro, Phys. Rev. A 98, 032332 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    S. Ghorai, E. Diamanti, A. Leverrier, Composable security of two-way continuous-variable quantum key distribution, https://doi.org/arXiv:1806.11356 (2018)
  32. 32.
    S. Pirandola et al., Nat. Photon. 9, 397 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    C. Ottaviani, G. Spedalieri, S.L. Braunstein, S. Pirandola, Phys. Rev. A 91, 022320 (2015) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Z. Li et al., Phys. Rev. A 89, 052301 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhang et al., Phys. Rev. A 90, 052325 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    P. Papanastasiou, C. Ottaviani, S. Pirandola, Phys. Rev. A 96, 042332 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    C. Lupo, C. Ottaviani, P. Papanastasiou, S. Pirandola, Phys. Rev. A 97, 052327 (2018) ADSCrossRefGoogle Scholar
  38. 38.
    C. Lupo, C. Ottaviani, P. Papanastasiou, S. Pirandola, Phys. Rev. Lett. 120, 220505 (2018) ADSCrossRefGoogle Scholar
  39. 39.
    S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun. 8, 15043 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    T.P.W. Cope, L. Hetzel, L. Banchi, S. Pirandola, Phys. Rev. A 96, 022323 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    S. Pirandola, R. Laurenza, L. Banchi, Ann. Phys. 400, 289 (2019) ADSCrossRefGoogle Scholar
  42. 42.
    T.P.W. Cope, K. Goodenough, S. Pirandola, J. Phys. A: Math. Theor. 51, 494001 (2018) CrossRefGoogle Scholar
  43. 43.
    S. Pirandola, S.L. Braunstein, R. Laurenza, C. Ottaviani, T.P.W. Cope, G. Spedalieri, L. Banchi, Quantum Sci. Technol. 3, 035009 (2018) ADSCrossRefGoogle Scholar
  44. 44.
    S. Pirandola, R. Laurenza, S.L. Braunstein, Eur. Phys. J. D 72, 162 (2018) ADSCrossRefGoogle Scholar
  45. 45.
    C. Ottaviani et al., Quantum Inf. Sci. Technol. II 9996, 999609 (2016) Google Scholar
  46. 46.
    B. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, Phys. Rev. Lett. 94, 160502 (2005) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A.S. Holevo, R.F. Werner, Phys. Rev. A 63, 032312 (2001) ADSCrossRefGoogle Scholar
  50. 50.
    S. Pirandola, R. García-Patrón, S.L. Braunstein, S. Lloyd, Phys. Rev. Lett. 102, 050503 (2009) ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    V. Vedral, Rev. Mod. Phys. 74, 197 (2002) ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997) ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Gan Wang
    • 1
    • 2
  • Carlo Ottaviani
    • 2
  • Hong Guo
    • 1
  • Stefano Pirandola
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, and Center for Quantum Information Technology, Peking UniversityBeijingP.R. China
  2. 2.Computer Science, University of YorkYorkUK
  3. 3.Research Lab of Electronics, MITCambridgeUSA

Personalised recommendations