Advertisement

Monte Carlo simulation of the implantation profile of e+ in nanochanneled silicon

  • Francesco Guatieri
  • Sebastiano Mariazzi
  • Roberto Sennen Brusa
Regular Article
  • 14 Downloads

Abstract

The process of implantation and diffusion of positron in nanochanneled silicon crystals has been simulated in detail through the Monte Carlo technique. Our implantation simulations evidenced the fraction of empty volume inside the sample to be the decisive factor in the determination of the shape of the implantation profile, with the specific shape of the nanoscopic structure playing a marginal role for implantation processes with an energy above 3 keV. Moreover we observed that, due to the high density of surfaces inside of the silicon sample, the subsequent diffusion process is highly suppressed and that thermalized positrons reach the surface of a nanoscopic channel close to their implantation depth. Due to this suppression of the diffusion process, 60–80% of the positrons implanted at an energy comprised between 4 and 13 keV will reach, at thermal energy, the surface of a channel without escaping the sample or undergoing annihilation.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    D.B. Cassidy, Eur. Phys. J. D 72, 53 (2018) ADSCrossRefGoogle Scholar
  2. 2.
    D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    S. Aghion et al. (AEgIS Collaboration), Phys. Rev. A 94, 012507 (2016) ADSGoogle Scholar
  4. 4.
    S. Aghion et al. (AEgIS Collaboration), Phys. Rev. A 98 013402 (2018) ADSGoogle Scholar
  5. 5.
    D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 043401 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 133402 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 109, 073401 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    P. Crivelli, D.A. Coole, S. Friederich, Int. J. Mod. Phys.: Conf. Ser. 30, 1460257 (2014) Google Scholar
  9. 9.
    D.B. Cassidy, S.D. Hogan, Int. J. Mod. Phys.: Conf. Ser. 30, 1460259 (2014) Google Scholar
  10. 10.
    A. Kellerbauer et al. (AEgIS Collaboration), Nucl. Instrum. Methods Phys. Res. B 266, 351 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    P.M. Platzman, A.P. Mills Jr., Phys. Rev. B 49, 454 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    H. Iijima, T. Asonuma, T. Hirose, M. Irako, T. Kumita, M. Kajita, K. Matsuzawa, K. Wada, Nucl. Instrum. Methods Phys. Res. A 455, 104 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    P. Perez, A. Rosowsky, Nucl. Instrum. Methods Phys. Res. A 545, 20 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, R.S. Brusa, Phys. Rev. B 81, 235418 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, T. Shidara, K. Nakahara, Phys. Rev. B 58, 12676 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988) ADSCrossRefGoogle Scholar
  18. 18.
    H. Saito, T. Hyodo, New Directions in Antimatter Chemistry and Physics (Kluwer Academic Publishers, Dordrecht, 2001), Chap. 7 Google Scholar
  19. 19.
    M.P. Petkov, C.L. Wang, M.H. Weber, K.G. Lynn, K.P. Rodbell, J. Phys. Chem. B 107, 2725 (2003) CrossRefGoogle Scholar
  20. 20.
    R.S. Brusa, A. Dupasquier, in Proceedings of the International School of Physics “Enrico Fermi”, 2009, p. 245  https://doi.org/10.3254/978-1-60750-646-1-245
  21. 21.
    J. Dryzek, P. Horodek, Nucl. Instrum. Methods Phys. Res. B 266, 4000 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 3 (1994) CrossRefGoogle Scholar
  23. 23.
    A.F. Makhov, Sov. Phys. Solid State 2, 1934 (1960) Google Scholar
  24. 24.
    A.F. Makhov, Sov. Phys. Solid State 2, 1942 (1960) Google Scholar
  25. 25.
    A.F. Makhov, Sov. Phys. Solid State 2, 1945 (1960) Google Scholar
  26. 26.
    E. Soininen, J. Mäkinen, D. Beyer, P. Hautojärvi, Phys. Rev. B 46, 20 (1992) Google Scholar
  27. 27.
    J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67, 125404 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    S. Valkealahti, R.M. Nieminen, Appl. Phys. A 32, 95 (1983) ADSCrossRefGoogle Scholar
  29. 29.
    S. Valkealahti, R.M. Nieminen, Appl. Phys. A 35, 51 (1984) ADSCrossRefGoogle Scholar
  30. 30.
    F. Guatieri, Production and excitation of cold Ps for H̄ formation by charge exchange: towards a gravitational measurement on antimatter, Ph.D. Thesis, Università degli studi di Trento, 2018 Google Scholar
  31. 31.
    J. Sempau, J.M. Fernández-Varea, E. Acosta, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 207, 107 (2003) ADSCrossRefGoogle Scholar
  32. 32.
    J. Baró, J. Sempau, J.M. Fernández-Varea, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 100, 31 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Fernández-Varea, R. Mayol, J. Baró, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 73, 447 (1993) ADSCrossRefGoogle Scholar
  35. 35.
    S.K.L. Sjue, F.G. Mariam, F.E. Merrill, C.L. Morris, A. Saunders, Rev. Sci. Instrum. 87, 015110 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Fernández-varea, D. Liljequist, S. Csillag, R. Räty, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 108, 35 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    V.J. Ghosh, G.C. Aers, Phys. Rev. B 51, 45 (1995) ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Treurniet, D.W.O. Rogers, NRC Report PIRS-669, Oct, 1999 Google Scholar
  39. 39.
    S. Mariazzi, L. Di Noto, G. Nebbia, R.S. Brusa, J. Phys.: Conf. Ser. 618, 012039 (2015) Google Scholar
  40. 40.
    R.M. Nieminen, J. Oliva, Phys. Rev. B 22, 2226 (1980) ADSCrossRefGoogle Scholar
  41. 41.
    K.A. Ritley, K.G. Lynn, V.J. Ghosh, D.O. Welch, M. McKeown, J. Appl. Phys. 74, 3479 (1993) ADSCrossRefGoogle Scholar
  42. 42.
    R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors – Defect Studies (Springer, Heidelberg, 1999) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Guatieri
    • 1
    • 2
  • Sebastiano Mariazzi
    • 1
    • 2
  • Roberto Sennen Brusa
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of TrentoPovo, TrentoItaly
  2. 2.TIFPA/INFN TrentoPovo, TrentoItaly

Personalised recommendations