Advertisement

Theoretical investigation of the black-body Zeeman shift for microwave atomic clocks

  • Jize Han
  • Yani Zuo
  • Jianwei ZhangEmail author
  • Lijun Wang
Regular Article
  • 15 Downloads

Abstract

With the development of microwave atomic clocks, the Zeeman shifts for the spectral lines of black-body radiation need to be investigated carefully. In this paper, the frequency shifts of hyperfine splittings of atomic ground states due to the magnetic field of black-body radiation are reported. The relative frequency shifts of different alkali atoms and alkali-like ions, which could be candidates of microwave atomic clocks, were calculated. The results vary from −0.977 × 10−17[T(K)/300]2 to −1.947 × 10−17[T(K)/300]2 for different atoms considered. These results are consistent with previous work but with greater precision, detailed derivations, and a clear physical picture.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    S.G. Porsev, A. Derevianko, Phys. Rev. A 74, 020502(R) (2006) ADSCrossRefGoogle Scholar
  2. 2.
    D. Jiang et al., J. Phys. B: At. Mol. Opt. Phys. 42, 154020 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    K. Beloy et al., Phys. Rev. Lett. 97, 040801 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    B. Arora, M.S. Safronova, C.W. Clark, Phys. Rev. A 76, 064501 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Safronova et al., Phys. Rev. A 87, 012509 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Safronova, U.I. Safronova, Phys. Rev. A 83, 012503 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    S. Micalizio et al., Phys. Rev. A 69, 053401 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    U.I. Safronova, M.S. Safronova, Phys. Rev. A 79, 022512 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    T. Middelmann et al., Phys. Rev. Lett. 109, 263004 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Safronova et al., Phys. Rev. A 87, 012509 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    W.M. Itano, L.L. Lewis, D.J. Wineland, Phys. Rev. A 25, 1233(R) (1982) ADSCrossRefGoogle Scholar
  12. 12.
    W. Gao, X. Ke, H. Liu, Acta Opt. Sin. 20, 3 (2000) (in Chinese) Google Scholar
  13. 13.
    C.J. Foot, Atomic Physics (Oxford University Press, Oxford, 2005) Google Scholar
  14. 14.
    D.A. Steck, Quantum and Atom Optics (available online at https://doi.org/steck.us/teaching (revision 12, 16 May 2017))
  15. 15.
    A. Xing, T. Dong, X. Huang, Acta Sin. Quant. Opt. 7, 1 (2001) (in Chinese) Google Scholar
  16. 16.
    J.B. Chen et al., Chin. Phys. Lett. 18, 2 (2001) Google Scholar
  17. 17.
    J. Vanier, C. Audoin, in Quantum Physics of Atomic Frequency Standards (CRC Press, Boca Raton, 1989), Vol. 1 Google Scholar
  18. 18.
    G. Dixit et al., J. Phys. B: At. Mol. Opt. Phys. 41, 025001 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    J. Benhelm et al., Phys. Rev. A 75, 032506 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    H. Sunaoshi et al., Hyperfine Interactions 78, 241 (1993) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jize Han
    • 1
  • Yani Zuo
    • 1
  • Jianwei Zhang
    • 2
    • 3
    Email author
  • Lijun Wang
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsTsinghua UniversityBeijingP.R. China
  2. 2.State Key Laboratory of Precision Measurement Technology and InstrumentsTsinghua UniversityBeijingP.R. China
  3. 3.Department of Precision InstrumentsTsinghua UniversityBeijingP.R. China

Personalised recommendations