Advertisement

Spin dynamics in lattices of spinor atoms with quadratic Zeeman effect

  • Vyacheslav I. Yukalov
  • Elizaveta P. Yukalova
Regular Article
  • 18 Downloads

Abstract

A lattice system of spinor atoms or molecules experiencing quadratic Zeeman effect is considered. This can be an optical lattice with sufficiently deep wells at lattice sites, so that the system is in an isolating state, where atoms are well localized. But their effective spins can move in the presence of external magnetic fields. The dynamics of spins, starting from an initial nonequilibrium state, is investigated. The system is immersed into a magnetic coil of an electric circuit, creating a magnetic feedback field. Two types of quadratic Zeeman effect are treated, a nonresonant, so-called static-current quadratic Zeeman effect and a quasi-resonant alternating-current quadratic Zeeman effect. Spin dynamics in these conditions is highly nonlinear. Different regimes of spin dynamics, starting from a strongly nonequilibrium state, are studied. Conditions for realizing fast spin reversal are found, which can be used in quantum information processing and spintronics.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A. Griesmaier, J. Phys. B 40, R91 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Baranov, Phys. Rep. 464, 71 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University, Cambridge, 2008) Google Scholar
  4. 4.
    M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (World Scientific, Singapore, 2010) Google Scholar
  5. 5.
    M.A. Baranov, M, Dalmonte, G. Pupillo, P. Zoller, Chem. Rev. 112, 5012 (2012) CrossRefGoogle Scholar
  6. 6.
    B. Gadway, B Yan, J. Phys. B 49, 152002 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Stamper-Kurn, M. Ueda, Rev. Mod. Phys. 85, 1191 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    V.I. Yukalov, E.P. Yukalova, Laser Phys. 26, 045501 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    V.I. Yukalov, Laser Phys. 28, 053001 (2018) ADSCrossRefGoogle Scholar
  10. 10.
    F.A. Jenkins, E. Segre, Phys. Rev. 59, 52 (1939) ADSCrossRefGoogle Scholar
  11. 11.
    L.I. Schiff, H. Snyder, Phys. Rev. 59, 59 (1939) ADSCrossRefGoogle Scholar
  12. 12.
    J. Killingbeck, J. Phys. B 12, 25 (1979) ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Coffey, A. Deprit, B. Miller, C.A. Williams, New York Acad. Sci. 497, 22 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    F. Gerbier, A. Widera, S. Folling, O. Mandel, I. Bloch, Phys. Rev. A 73, 041602 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    S.R. Leslie, J. Guzman, M. Vengalattore, J.D. Sau, M.L. Cohen, D.M. Stamper-Kurn, Phys. Rev. A 79, 043631 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    E.M. Bookjans, A. Vinit, C. Raman, Phys. Rev. Lett. 107, 195306 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    C. Cohen-Tannoudji, J. Dupon-Roc, Phys. Rev. A 5, 968 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    L. Santos, M. Fattori, J. Stuhler, T. Pfau, Phys. Rev. A 75, 053606 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    K. Jensen, V.M. Acosta, J.M. Higbie, M.P. Ledbetter, S.M. Rochester, D. Budker, Phys. Rev. A 79, 023406 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A. de Paz, A. Sharma, A. Chotia, E. Marechal, J. Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    A.K. Jonscher, Universal Relaxation Rate (Chelsea Dielectrics, London, 1996) Google Scholar
  22. 22.
    N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Yukalov, Laser Phys. 12, 1089 (2002) Google Scholar
  24. 24.
    V.I. Yukalov, E.P. Yukalova, Phys. Part. Nucl. 35, 348 (2004) Google Scholar
  25. 25.
    V.I. Yukalov, Phys. Rev. B 71, 184432 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    V.I. Yukalov, Laser Phys. 5, 970 (1995) Google Scholar
  27. 27.
    V.I. Yukalov, Phys. Rev. B 53, 9232 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    V.I. Yukalov, E.P. Yukalova, J. Magn. Magn. Mater. 465, 450 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-, Amsterdam, 1981) Google Scholar
  30. 30.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics (Springer, Berlin, 1985) Google Scholar
  31. 31.
    A.S. Mikhailov, Phys. Rep. 184, 307 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    D. ter Haar Lectures on Selected Topics in Statistical Mechanics (Pergamon, Oxford, 1977) Google Scholar
  33. 33.
    A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon, Oxford, 1982) Google Scholar
  34. 34.
    N.N. Bogolubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordonand Breach, New York, 1961) Google Scholar
  35. 35.
    M.I. Freidlin, D.A. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1998) Google Scholar
  36. 36.
    J.A. Morrison, J. McKenna, in Stochastic Differential Equations, edited by J.B. Keller, H.P. McKean (Am. Math. Soc., Providence, 1973), p. 97 Google Scholar
  37. 37.
    C. Frapolli, T. Zibold, A. Invernizzi, K.J. Garcia, J. Dalibard, F. Gerbier, Phys. Rev. Lett. 119, 050404 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    I.S. Grigoriev, E.Z. Meilikhov, eds., Handbook of Physical Quantities (CRC, Boca Raton, 1996) Google Scholar
  39. 39.
    J.L. Birman, R.G. Nazmitdinov, V.I. Yukalov, Phys. Rep. 526, 1 (2013) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S.J. Prado, C. Trallero-Giner, A.M. Alcalde, V. Lopez-Richard, G.E. Marques, Phys. Rev. B 67, 165306 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vyacheslav I. Yukalov
    • 1
    • 2
  • Elizaveta P. Yukalova
    • 3
  1. 1.Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Instituto de Fisica de São Carlos, Universidade de São PauloSão PauloBrazil
  3. 3.Laboratory of Information Technologies, Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations