Advertisement

Electron capture, excitation and ionization processes in He2+–H collisions in dense quantum plasmas

  • Dragan JakimovskiEmail author
  • Ratko K. Janev
Regular Article
  • 19 Downloads

Abstract

Electron capture, excitation and ionization processes in He2+–H collisions taking place in quantum plasmas are studied by employing the two-center atomic orbital close coupling (TC-AOCC) method. The Debye-Hückel-cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of eigenenergies of hydrogen-like atom with DHC potential are investigated as function of the screening length of the potential. It is found that the binding energies of nl states decrease with decreasing the screening length of the potential. The dynamics of excitation, electron capture and ionization processes in He2+–H collision system is investigated when the screening length of the potential varies for a wide collision energy range. The TC-AOCC cross sections are compared with those for the pure Coulomb potential and, for the total electron capture, with the results of classical trajectory Monte Carlo method.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    P. Debye, E. Hückel, Phys. Z. 24, 185 (1923) Google Scholar
  2. 2.
    R.K. Janev, S.B. Zhang, J.G. Wang, Matter Radiat. Extreme 1, 237 (2016) CrossRefGoogle Scholar
  3. 3.
    P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    L.G. Stanton, M.S. Murillo, Phys. Rev. E 91, 033104 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    G.P. Zhao, L. Liu, J.G. Wand, R.K. Janev, Phys. Plasmas 24, 103504 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    D. Jakimovski, N. Markovska, R.K. Janev, J. Phys. B: At. Mol. Phys. 49, 205701 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    A. Ghoshal, Y.K. Ho, J. Phys. B 42, 175006 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    I. Nasser, M.S. Abdelmonem, A. Abdel-Hady, Phys. Scr. 84, 045001 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    A. Ghoshal, Y.K. Ho, Phys. Scr. 83, 065301 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    A. Bhattacharya, Z.M. Kamali, A. Ghoshal, K. Ratnavelu, Phys. Plasmas 20, 083514 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    S. Nayek, A. Ghoshal, Phys. Scr. 85, 035301 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    N.F. Lai, Y.C. Lin, C.Y. Lin, Y.K. Ho, Chin. J. Phys. 51, 73 (2013) Google Scholar
  13. 13.
    C.Y. Lin, Y.K. Ho, Comput. Phys. Commun. 182, 125 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    L.-Y. Zhang, X. Qi, X.-Y. Zhao, D.-Y. Meng, G.-Q. Xiao, W.-S. Duan, L. Yang, Phys. Plasmas 20, 113301 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    L.-Y. Zhang, X.-Y. Zhao, J.-F. Wan, G.-Q. Xiao, W.-S. Duan, X. Qi, L. Yang, Phys. Plasmas 21, 093302 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Plasmas 23, 073302 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Plasmas 24, 062110 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    B.H. Bransden, M.R.C. McDowell, Charge Exchange and the Theory of Ion-Atom Collisions (Clarendon Press, Oxford, 1992) Google Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, London, 1958) Google Scholar
  20. 20.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991) ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Reeves, J. Chem. Phys. 39, 1 (1963) ADSCrossRefGoogle Scholar
  22. 22.
    J. Kuang, C.D. Lin, J. Phys. B 30, 101 (1997) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSts Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Macedonian Academy of Sciences and ArtsSkopjeMacedonia

Personalised recommendations