Advertisement

Schmidt decomposition in the interaction of a three-level atom and a quantized field

  • Jorge A. Anaya-Contreras
  • Arturo Zúñiga-Segundo
  • Aldo Espinosa-Zúñiga
  • Francisco Soto-Eguibar
  • Héctor M. Moya-Cessa
Regular Article
  • 22 Downloads
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We show that multiphoton processes may be generated in the interaction between three-level atoms and quantized fields. Such processes are produced, with good probability, by measuring Schmidt states of the atom. Furthermore, the Schmidt decomposition allows us to define the entropy operators associated with the atom and the field.

Graphical abstract

References

  1. 1.
    B.M. Garraway, B. Sherman, H. Moya-Cessa, P.L. Knight, G. Kurizki, Phys. Rev. A 49, 535 (1994) CrossRefADSGoogle Scholar
  2. 2.
    H. Moya-Cessa, P.L. Knight, A. Rosenhouse-Dantsker, Phys. Rev. A 50, 1814 (1994) CrossRefADSGoogle Scholar
  3. 3.
    H. Ghosh, C.C. Gerry, J. Opt. Soc. Am. B 14, 2782 (1997) CrossRefADSGoogle Scholar
  4. 4.
    A. Luis, J. Opt. Soc. Am. B 24, 2619 (2007) MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    C. Valverde, B. Baseia, Mod. Phys. Lett. B 32, 1850026 (2018) CrossRefADSGoogle Scholar
  6. 6.
    J.A. Anaya-Contreras, A. Zúñiga-Segundo, F. Soto-Eguibar, H.M. Moya-Cessa, J. Mod. Opt. 64, 2262 (2017) CrossRefADSGoogle Scholar
  7. 7.
    E. Schmidt, Math. Annalen 63, 433 (1907) MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2010) Google Scholar
  9. 9.
    S.M. Barnett, A. Beige, A. Ekert, B.M. Garraway et al., Prog. Quant. Elec. 54, 19 (2017) CrossRefGoogle Scholar
  10. 10.
    A. Pathak, Elements of Quantum Computation and Quantum Communication (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013) Google Scholar
  11. 11.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  12. 12.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932) Google Scholar
  13. 13.
    M. Araki, E. Lieb, Commun. Math. Phys. 18, 49 (1970) CrossRefGoogle Scholar
  14. 14.
    X. Liu, Physica A 286, 588 (2000) CrossRefADSGoogle Scholar
  15. 15.
    H.P. Yuen, Phys. Rev. A 13, 2226 (1976) CrossRefADSGoogle Scholar
  16. 16.
    C.M. Caves, Phys. Rev. D 23, 1693 (1981) CrossRefADSGoogle Scholar
  17. 17.
    R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987) CrossRefADSGoogle Scholar
  18. 18.
    M.V. Satyanarayana, P. Rice, R. Vyas, H.J. Carmichael, J. Opt. Soc. Am. B 6, 228 (1989) CrossRefADSGoogle Scholar
  19. 19.
    H. Moya-Cessa, A. Vidiella-Barranco, J. Mod. Opt. 39, 2481 (1992) CrossRefADSGoogle Scholar
  20. 20.
    J.R. Kuklinski, J.L. Madajczyk, Phys. Rev. A 37, 3175 (1988) CrossRefADSGoogle Scholar
  21. 21.
    J.V. Uspensky, Theory of Equations (McGraw-Hill, New York, 1948) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional, ESFM, Departamento de Física, Edificio 9, Unidad Profesional Adolfo López MateosMexicoMexico
  2. 2.Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro 1, Santa María TonantzintlaPueblaMexico

Personalised recommendations