Advertisement

Efficient formation of stable ultracold Cs2 molecules in the ground electronic state via two-color photoassociation

  • Bing Kuan Lyu
  • Jing Lun Li
  • Meng Wang
  • Gao Ren Wang
  • Shu Lin CongEmail author
Regular Article
  • 15 Downloads

Abstract

The efficient formation of ultracold Cs2 molecules in a low vibrational state of the ground electronic state from ultracold cesium atoms via a two-color pump–dump photoassociation is theoretically investigated. An excited state wave packet is formed by a negative chirped pump pulse, and then is de-excited to the target vibrational state of the ground electronic state by a long dump pulse. The population transfer process from the excited electronic state to the target vibrational state is closely related to the movement of the excited state wave packet. We find that there exists a dump window during the movement of the excited state wave packet. The population in the excited electronic state can be efficiently de-excited to the target vibrational state of the ground electronic state by the dump pulse turned on in this dump window, and the efficiency of de-excitation reaches 67.11%. The population of the target vibrational state can be further transferred to the lowest vibrational state of the ground electronic state, and the transfer efficiency can reach 99.96%.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Jin, J. Ye, Chem. Rev. 112, 4801 (2012) CrossRefGoogle Scholar
  3. 3.
    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    E.R. Hudson, H.J. Lewandowski, B.C. Sawyer, J. Ye, Phys. Rev. Lett. 96, 143004 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    T. Zelevinsky, S. Kotochigova, J. Ye, Phys. Rev. Lett. 100, 043201 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Nature 473, 493 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    S. Truppe, R.J. Hendricks, S.K. Tokunaga, H.J. Lewandowski, M.G. Kozlov, C. Henkel, E.A. Hinds, M.R. Tarbutt, Nat. Commun. 4, 2600 (2003) CrossRefGoogle Scholar
  8. 8.
    M.T. Bell, T.P. Softley, Mol. Phys. 107, 99 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    N. Balakrishnan, J. Chem. Phys. 145, 150901 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    R. de Carvalho, J.M. Doyle, B. Friedrich, T. Guillet, J. Kim, D. Patterson, J.D. Weinstein, Eur. Phys. J. D 7, 289 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    N.R. Hutzler, H. Lu, J.M. Doyle, Chem. Rev. 112, 4803 (2012) CrossRefGoogle Scholar
  12. 12.
    H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    S.Y.T. van de Meerakker, H.L. Bethlem, N. Vanhaecke, G. Meijer, Chem. Rev. 112, 4828 (2012) CrossRefGoogle Scholar
  14. 14.
    D.J. McCabe, D.G. England, H.E.L. Martay, M.E. Friedman, J. Petrovic, E. Dimova, C. Béatrice, I.A. Walmsley, Phys. Rev. A 80, 033404 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemüller, Chem. Rev. 112, 4890 (2012) CrossRefGoogle Scholar
  16. 16.
    Y. Huang, T. Xie, G.R. Wang, W. Zhang, S.L. Cong, Laser Phys. 24, 046001 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    E.F. de Lima, Phys. Rev. A 95, 013411 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    Z.H. Li, T. Gong, Z.H. Ji, Y.T. Zhao, L.T. Xiao, S.T. Jia, Phys. Chem. Chem. Phys. 20, 4893 (2018) CrossRefGoogle Scholar
  19. 19.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    S. Taie, S. Watanabe, T. Ichinose, Y. Takahashi, Phys. Rev. Lett. 116, 043202 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    M. Borkowski, R.M. Rodriguez, M.B. Kosicki, R. Ciurylo, P.S. Zuchowski, Phys. Rev. A 96, 063411 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    D. Comparat, C. Drag, B.L. Tolra, A. Fioretti, P. Pillet, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, Eur. Phys. J. D 11, 59 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    E. Luc-Koenig, R. Kosloff, F. Masnou-Seeuws, M. Vatasescu, Phys. Rev. A 70, 033414 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, Phys. Rev. Lett. 115, 173003 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, J. Phys. Chem. A 120, 3032 (2016) CrossRefGoogle Scholar
  28. 28.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985) ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986) ADSCrossRefGoogle Scholar
  32. 32.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    C.P. Koch, E. Luc-Koenig, F. Masnou-Seeuws, Phys. Rev. A 73, 033408 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    C.P. Koch, M. Shapiro, Chem. Rev. 112, 4928 (2012) CrossRefGoogle Scholar
  35. 35.
    V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, J. Chem. Phys. 110, 9865 (1999) ADSCrossRefGoogle Scholar
  36. 36.
    K. Willner, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 120, 548 (2004) ADSCrossRefGoogle Scholar
  37. 37.
    H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    W. Zhang, Y. Huang, T. Xie, G.R. Wang, S.L. Cong, Phys. Rev. A 82, 063411 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    B.W. Shore, in The Theory of Coherent Atomic Excitation: Multilevel Atoms and Incoherence (Wiley, New York, 1990), Vol. 2, pp. 860–866 Google Scholar
  40. 40.
    J.C. Wright, T.J. Zielinski, J. Chem. Educ. 76, 1367 (1999) CrossRefGoogle Scholar
  41. 41.
    W.C. Stwalley, Y.-H. Uang, G. Pichler, Phys. Rev. Lett. 41, 1164 (1978) ADSCrossRefGoogle Scholar
  42. 42.
    A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Eur. Phys. J. D 5, 389 (1999) ADSCrossRefGoogle Scholar
  43. 43.
    J.Z. Wu, W.L. Liu, Y.Q. Li, J. Ma, L.T. Xiao, S.T. Jia, JQSRT 191, 13 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bing Kuan Lyu
    • 1
  • Jing Lun Li
    • 1
  • Meng Wang
    • 1
  • Gao Ren Wang
    • 1
  • Shu Lin Cong
    • 1
    Email author
  1. 1.School of Physics, Dalian University of TechnologyDalianP.R. China

Personalised recommendations