Advertisement

High-intensity isolated attosecond X-ray pulse generation by using low-intensity ultraviolet–mid-infrared laser beam

  • Liqiang Feng
  • Yi Li
Regular Article

Abstract

An efficient approach to obtain the high-intensity isolated attosecond X-ray pulse has been proposed and studied by using the low-intensity ultraviolet–mid-infrared (UV–MIR) laser beam. It is found that with the superposition of the UV–MIR beam, not only the harmonic efficiency can be enhanced, but also the harmonic cutoff can be extended to the X-ray region. In detail, the results can be separated into two parts. Firstly, when the fundamental field is chosen to be the linearly polarization MIR field, the enhancement of the harmonic efficiency is sensitive to the pulse duration and the delay time of the UV pulse. Moreover, the enhancement of the harmonic spectrum is coming from the multiple harmonic emission peaks (HEPs). Secondly, when the fundamental field is chosen to be the polarization gating two circularly polarization MIR fields, the enhancement of the harmonic efficiency is independent on the pulse duration and the delay time of the UV pulse, which is much better for experimental realization. Moreover, the enhancement of the harmonic spectrum is nearly coming from the single HEP. Further, with the introduction of the unipolar pulse, the harmonic cutoff can be further extended and some sub-40 as single X-ray pulses with the intensity enhancement of 450 dB can be obtained.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    H.J. Wöner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466, 604 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460, 972 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 95, 043425 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    C. Jin, A.T. Le, C.D. Lin, Phys. Rev. A 79, 053413 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Mairesse, A.D. Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovaĉev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Science 302, 1540 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    X. Cao, S. Jiang, C. Yu, Y. Wang, L. Bai, R. Lu, Opt. Express 22, 26153 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    N. Kaya, G. Kaya, J. Strohaber, A.A. Kolomenskii, H.A. Schuessler, Eur. Phys. J. D 70, 224 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    L.Q. Feng, T.S. Chu, J. Chem. Phys. 136, 054102 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S.D. Silvestri, M. Nisoli, Science 314, 443 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    J. Li, X.M. Ren, Y.C. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z.H. Chang, Appl. Phys. Lett. 108, 231102 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    H. Mashiko, S. Gibertson, C.Q. Li, S.D. Khan, M.M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    K. Zhao, Q. Zhang, M. Chini, Y. Wu, X.W. Wang, Z.H. Chang, Opt. Lett. 37, 3891 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    Z.N. Zeng, Y. Cheng, X.H. Song, R.X. Li, Z.Z. Xu, Phys. Rev. Lett. 98, 203901 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    R.F. Lu, H.X. He, Y.H. Guo, K.L. Han, J. Phys. B: At. Mol. Opt. Phys. 42, 225601 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    Q.B. Zhang, P.X. Lu, W.Y. Hong, Q. Liao, S.Y. Wang, Phys. Rev. A 80, 033405 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nat. Phys. 9, 304 (2013) CrossRefGoogle Scholar
  25. 25.
    I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kim, M.F. Kling, M.I. Stockman, S.-W. Kim, Nat. Photon. 5, 677 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    M.F. Ciappina et al., Rep. Prog. Phys. 80, 054401 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, L. Roso, A. Zaïr, Phys. Rev. Lett. 110, 053001 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    M.F. Ciappina, T. Shaaran, M. Lewenstein, Ann. Phys. 525, 97 (2013) CrossRefGoogle Scholar
  29. 29.
    I. Yavuz, M.F. Ciappina, A. Chacón, Z. Altun, M.F. Kling, M. Lewenstein, Phys. Rev. A 93, 033404 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    L.Q. Feng, Phys. Rev. A 92, 053832 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    B.E. Schmidt, N. Thiré, M. Boivin, A. Laramé, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Légaré, Nat. Commun. 5, 3643 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    Y. Chou, P.C. Li, T.S. Ho, S.I. Chu, Phys. Rev. A 91, 063408 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    S.M. Teichmann, F. Silva, S.L. Cousin, M. Hemmer, J. Bieger, Nat. Commun. 7, 11493 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    F. Silva, S.M. Teichmann, S.L. Cousin, M. Hemmer, J. Biegert, Nat. Commun. 6, 6611 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    G.C. Li, Y.H. Zheng, Z.N. Zeng, R.X. Li, Chin. Opt. Lett. 15, 071901 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    H. Liu, R.L.Q. Feng, Spectrosc. Lett. 50, 289 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    L.Q. Feng, W.L. Li, H. Liu, Ann. Phys. (Berlin) 529, 1700093 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) CrossRefGoogle Scholar
  41. 41.
    G. Chen, F.D. Zhang, Eur. Phys. J. D 71, 137 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    L.Q. Feng, T.S. Chu, Phys. Plasmas 24, 103121 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    L.Q. Feng, H. Liu, Phys. Plasmas 22, 013107 (2015) ADSCrossRefGoogle Scholar
  44. 44.
    P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    L.Q. Feng, K. Liu, Int. J. Mod. Phys. B 32, 1850161 (2018) ADSCrossRefGoogle Scholar
  46. 46.
    G. Orlando, P.P. Corso, E. Fiordilino, F. Persico, J. Mod. Opt. 56, 1761 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    X.H. Song, W.F. Yang, Z.N. Zeng, R.X. Li, Z.Z. Xu, Phys. Rev. A 82, 053821 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    L.Q. Feng, H. Liu, Can. J. Phys. 94, 651 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Modern Physics, Liaoning University of TechnologyJinzhouP.R. China
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of SciencesDalianP.R. China
  3. 3.Photonics Institute, Vienna University of TechnologyViennaAustria

Personalised recommendations