Advertisement

Generalized modular values with non-classical pointer states

  • Yusuf Turek
  • Taximaiti Yusufu
Regular Article
  • 20 Downloads

Abstract

In this study, we investigate the generalized modular value scheme based on non-classical pointer states. We consider a typical von Neumann measurement with a discrete quantum pointer, where the pointer is a projection operator onto one of the states of the basis of the pointer Hilbert space. We separately calculate the conditional probabilities, Qm factors, and signal-to-noise ratios of quadrature operators of coherent, coherent squeezed, and Schrödinger cat pointer states and find that the non-classical pointer states can increase the negativity of the field and precision of measurement compared with semi-classical states in generalized measurement problems characterized by the modular value.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes-Quantum Theory for the Perplexed (Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, 2005) Google Scholar
  3. 3.
    A. Hosoya, Y. Shikano, J. Phys. A 43, 385307 (2010) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.G. Kofman, S. Ashhab, F. Nori, Phys. Rep. 520, 43 (2012) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Dressel, M. Malik, F.M. Miatto, A.N. Jordan, R.W. Boyd, Rev. Mod. Phys. 86, 307 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    G.C. Knee, E.M. Gauger, Phys. Rev. X 4, 011032 (2014) Google Scholar
  7. 7.
    X. Zhu, Y. Zhang, S. Pang, C. Qiao, Q. Liu, S. Wu, Phys. Rev. A 84, 052111 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    S. Pang, T.A. Brun, https://doi.org/arXiv:1409.2567 (2014)
  9. 9.
    K. Nakamura, A. Nishizawa, M.K. Fujimoto, Phys. Rev. A 85, 012113 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Turek, H. Kobayashi, T. Akutsu, C.P. Sun, Y. Shikano, New. J. Phys. 17, 083029 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Turek, W. Maimaiti, Y. Shikano, C.P. Sun, M. Al-Amri, Phys. Rev. A 92, 022109 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Kedem, L. Vaidman, Phys. Rev. Lett. 105, 230401 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    L.B. Ho, N. Imoto, Phys. Lett. A 380, 2129 (2016) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.B. Ho, N. Imoto, Phys. Rev. A 95, 032135 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    Y.S. Weinstein, S. Lloyd, C. Tsall, Phys. Rev. Lett. 89, 214101 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994) Google Scholar
  17. 17.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997) Google Scholar
  18. 18.
    G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, England, 2013) Google Scholar
  19. 19.
    V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597 (1974) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I.A. Malkin, V.I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems (Nauka, Moscow, 1979) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Electronic Engineering, Xinjiang Normal UniversityUrumqi, XinjiangP.R. China
  2. 2.Laboratory of Novel Light Source and Micronano-Optics, Xinjiang Normal UniversityUrumqi, XinjiangP.R. China

Personalised recommendations