Advertisement

Colored collapse models from the non-interferometric perspective

  • Matteo Carlesso
  • Luca Ferialdi
  • Angelo Bassi
Open Access
Regular Article
Part of the following topical collections:
  1. Topcical Issue: Quantum Correlations

Abstract

Models of spontaneous wave function collapse describe the quantum-to-classical transition by assuming a progressive breakdown of the superposition principle when the mass of the system increases, providing a well-defined phenomenology in terms of a non-linearly and stochastically modified Schrödinger equation, which can be tested experimentally. The most popular of such models is the continuous spontaneous localization (CSL) model: in its original version, the collapse is driven by a white noise, and more recently, generalizations in terms of colored noises, which are more realistic, have been formulated. We will analyze how current non-interferometric tests bound the model, depending on the spectrum of the noise. We will find that low frequency purely mechanical experiments provide the most stable and strongest bounds.

Graphical abstract

References

  1. 1.
    E. Joos, H.D. Zeh, Z. Phys. B 59, 223 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Zurek, Phys. Today 44, 36 (1991) CrossRefGoogle Scholar
  3. 3.
    E. Joos, H.D. Zeh, C. Kiefer, D.J. W. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer-Verlag, Berlin, Heidelberg, 2003) CrossRefGoogle Scholar
  4. 4.
    M.A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, 1st edn. (Springer-Verlag, Berlin, Heidelberg, 2007) Google Scholar
  5. 5.
    A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Bassi, D.-A. Deckert, L. Ferialdi, Europhys. Lett. 92, 50006 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S.L. Adler, J. Phys. A 40, 2935 (2007) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    A. Bassi, C. Curceanu, Nucl. Phys. News 28, 37 (2018) Google Scholar
  12. 12.
    T. Kovachy et al., Nature 528, 530 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    S. Eibenberger et al., Phys. Chem. Chem. Phys. 15, 14696 (2013) CrossRefGoogle Scholar
  14. 14.
    K. Hornberger, J.E. Sipe, M. Arndt, Phys. Rev. A 70, 053608 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    M. Toroš, G. Gasbarri, A. Bassi, Phys. Lett. A 381, 3921 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    M. Toroš, A. Bassi, J. Phys. A 51, 115302 (2018) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K.C. Lee et al., Science 334, 1253 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S. Belli et al., Phys. Rev. A 94, 012108 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    T. Kovachy et al., Phys. Rev. Lett. 114, 143004 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    O. Usenko, A. Vinante, G. Wijts, T.H. Oosterkamp, Appl. Phys. Lett. 98, 133105 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    A. Vinante et al. (AURIGA Collaboration), Class. Quantum Grav. 23, S103 (2006) CrossRefGoogle Scholar
  22. 22.
    B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 131103 (2016) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    M. Armano et al., Phys. Rev. Lett. 120, 061101 (2018) ADSCrossRefGoogle Scholar
  26. 26.
    C.E. Aalseth et al. (The IGEX Collaboration), Phys. Rev. C 59, 2108 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    S.L. Adler, A. Vinante, Phys. Rev. A 97, 052119 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    M. Bahrami, Phys. Rev. A 97, 052118 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    A. Vinante et al., Phys. Rev. Lett. 116, 090402 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    M. Carlesso, A. Bassi, P. Falferi, A. Vinante, Phys. Rev. D 94, 124036 (2016) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    B. Helou, B.J.J. Slagmolen, D.E. McClelland, Y. Chen, Phys. Rev. D 95, 084054 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    A. Smirne, B. Vacchini, A. Bassi, Phys. Rev. A 90, 062135 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    A. Smirne, A. Bassi, Sci. Rep. 5, 12518 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    J. Nobakht et al., https://doi.org/arXiv:1808.01143 (2018) is still inpreparation status.
  35. 35.
    S.L. Adler, A. Bassi, J. Phys. A 40, 15083 (2007) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S.L. Adler, A. Bassi, J. Phys. A 41, 395308 (2008) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Bassi, L. Ferialdi, Phys. Rev. A 80, 012116 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    L. Ferialdi, A. Bassi, Phys. Rev. A 86, 022108 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    S.L. Adler, A. Bassi, S. Donadi, J. Phys. A 46, 245304 (2013) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Bilardello, S. Donadi, A. Vinante, A. Bassi, Physica A 462, 764 (2016) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    K. Piscicchia et al., Entropy 19, 319 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    S. Nimmrichter, K. Hornberger, K. Hammerer, Phys. Rev. Lett. 113, 020405 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    M. Bahrami et al., Phys. Rev. Lett. 112, 210404 (2014) ADSCrossRefGoogle Scholar
  44. 44.
    L. Diósi, Phys. Rev. Lett. 114, 050403 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    M. Carlesso et al., (2017) New J. Phys. 20, 083022 (2018) CrossRefGoogle Scholar
  46. 46.
    C. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag, Berlin, Heidelberg, 2004) Google Scholar
  47. 47.
    M. Paternostro et al., New J. Phys. 8, 107 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    Q. Fu, Phys. Rev. A 56, 1806 (1997) ADSCrossRefGoogle Scholar
  49. 49.
    S.L. Adler, F.M. Ramazanoğlu, J. Phys. A 40, 13395 (2007) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Bassi, S. Donadi, Phys. Lett. A 378, 761 (2014) ADSCrossRefGoogle Scholar
  51. 51.
    S. Donadi, D.-A. Deckert, A. Bassi, Ann. Phys. 340, 70 (2014) ADSCrossRefGoogle Scholar
  52. 52.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley and Sons, Hoboken, NJ, 2005) Google Scholar
  53. 53.
    F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007) CrossRefGoogle Scholar
  54. 54.
    L.P. Grishchuk, in General Relativity and John Archibald Wheeler, edited by I. Ciufolini, R. Matzner (Springer, Dordrecht, NJ, 2010), Vol. 367 Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TriesteTriesteItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Trieste SectionTriesteItaly
  3. 3.Department of Physics and AstronomyUniversity of SouthamptonSO17 1BJUK

Personalised recommendations