Advertisement

Vibrational energy redistribution of selectively excite liquid acetonitrile

  • Xiaosong Liu
  • Wei Zhang
  • Yang Wang
  • Weilong Liu
  • Zhe Lv
  • Yanqiang Yang
Regular Article
  • 11 Downloads

Abstract

Selective excitation of parent modes and detection of the intramolecular vibrational energy flow to daughter modes is proposed by the femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy. Vibrational modes of CCN bending at 379 cm−1, CN stretching at 2253 cm−1 and CH stretching at 2943 cm−1 are excited, energy flow to relative higher frequency ones located outside the excitation range is described. The up-hill energy flow from lower frequency modes to higher ones is related to the vibrational symmetry and vibrational couplings. With analysis of quantum beats arising from vibrational coupling, the CCN bending at 379 cm−1 is a doorway mode which makes energy transfer from outside to inside of the acetonitrile molecule and the CC stretching mode at 917 cm−1 is stagnation-point of vibrational energy redistribution.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    Y. Sun, B.C. Pein, D.D. Dlott, J. Phys. Chem. B 117, 15444 (2013) CrossRefGoogle Scholar
  2. 2.
    T. Shimanouchi, H. Matsuura, Y. Ogawa, I. Harada, J. Phys. Chem. Ref. Data 6, 993 (1977) ADSCrossRefGoogle Scholar
  3. 3.
    P. Neelakantan, Proc. Indian Acad. Sci. Sect. A 60, 422 (1964) Google Scholar
  4. 4.
    K.C. Wilson, B. Lyons, R. Mehlenbacher, R. Sabatini, D.W. McCamant, J. Chem. Phys. 131, 214502 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    X. Liu, W. Zhang, Y. Song, G. Yu, Z. Zheng, Y. Zeng, Z. Lv, H. Song, Y. Yang, J. Phys. Chem. A 121, 4948 (2017) CrossRefGoogle Scholar
  6. 6.
    D.D. Dlott, Theor. Comput. Chem. 13, 125 (2003) CrossRefGoogle Scholar
  7. 7.
    D.D. Dlott, M.D. Fayer, J. Chem. Phys. 92, 3798 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    S. Chen, W.A. Tolbert, D.D. Dlott, J. Phys. Chem. 98, 7759 (1994) CrossRefGoogle Scholar
  9. 9.
    G. Yu, Y. Zeng, W. Guo, H. Wu, G. Zhu, Z. Zheng, X. Zheng, Y. Song, Y. Yang, J. Phys. Chem. A 121, 2565 (2017) CrossRefGoogle Scholar
  10. 10.
    A. Tramer, C. Jungen, F. Lahmani, Energy Dissipation in Molecular Systems (Springer, Berlin, 2005) Google Scholar
  11. 11.
    Y. Paskover, A. Shalit, Y. Prior, Opt. Commun. 283, 1917 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    B.C. Pein, Y. Sun, D.D. Dlott, J. Phys. Chem. B 117, 10898 (2013) CrossRefGoogle Scholar
  13. 13.
    Z. Wang, A. Pakoulev, D.D. Dlott, Science 296, 2201 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Hill, E.L. Chronister, T.C. Chang, H. Kim, J.C. Postlewaite, D.D. Dlott, J. Chem. Phys. 88, 949 (1988) ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Fayer, A. Tokmakoff, D.D. Dlott, Mater. Res. Soc. Symp. Proc. 296, 1901 (1992) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaosong Liu
    • 1
  • Wei Zhang
    • 1
  • Yang Wang
    • 2
  • Weilong Liu
    • 1
  • Zhe Lv
    • 1
  • Yanqiang Yang
    • 1
    • 3
  1. 1.Department of PhysicsHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Institute of Oceanographic Instrumentation, Qilu University of TechnologyQingdaoP.R. China
  3. 3.National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering PhysicsChengduP.R. China

Personalised recommendations