Advertisement

Effect of polarization force on dust-acoustic cnoidal waves in dusty plasma

  • Kuldeep Singh
  • Yashika Ghai
  • Nimardeep Kaur
  • Nareshpal Singh SainiEmail author
Regular Article

Abstract

A theoretical investigation has been presented to study the effect of polarization force on nonlinear dust acoustic (DA) cnoidal waves in dusty plasma composed of negatively charged dust fluid, Maxwellian electrons and superthermally distributed ions. The effect of polarization force is significantly modified due to the presence of the superthermal ions. In particular, an increase in superthermality index of ions leads to a decrease in polarization parameter. By employing reductive perturbation method, the nonlinear Korteweg–de Vries (KdV) equation is derived for the study of DA cnoidal waves. Further, the Sagdeev potential approach is employed to find the solution of KdV equation to analyze the characteristics of DA cnoidal waves. Only negative potential DA cnoidal waves are observed. Furthermore, the combined effects of polarization force and superthermality of ions on the characteristics of negative potential DA cnoidal waves have been studied in detail. It is emphasized that the real implementation of our present results is in laboratory experiments as well as in different regions of space and astrophysical environments especially in Saturn’s magnetosphere, comet tails, etc.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    T.B. Benjamin, M.J. Lighthill, Proc. R. Soc. Lond. 224, 448 (1954) ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1995) CrossRefGoogle Scholar
  3. 3.
    J.S. Russell, in Meetings of the British Association for the Advancement of Science (Report on Waves, York, 1840) p. 311 Google Scholar
  4. 4.
    Y.H. Ichikawa, Phys. Scr. 20, 296 (1979) ADSCrossRefGoogle Scholar
  5. 5.
    K. Konno et al., J. Phys. Soc. Jpn. 4, 1907 (2007) Google Scholar
  6. 6.
    H. Schamel, Plasma Phys. 14, 905 (1972) ADSCrossRefGoogle Scholar
  7. 7.
    H. Schamel, J. Plasma Phys. 13, 139 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Gurevich, L. Stenflo, Phys. Scr. 38, 855 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    U. Kauschke, H. Schlüter, Plasma Phys. Control. Fusion 32, 1149 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    U. Kauschke, H. Schlüter, Plasma Phys. Control. Fusion 33, 1309 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    C.K. Goertz, Rev. Geophys. 27, 271 (1989) ADSCrossRefGoogle Scholar
  12. 12.
    M. Horanyi, D.A. Mendis, J. Geophys. Res. 294, 357 (1985) Google Scholar
  13. 13.
    P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38,543 (1990) ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Amin, G.E. Morfill, P.K. Shukla, Phys. Rev. E 58, 6517 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    P.K. Shukla, Phys. Plasmas 10, 1619 (2003) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Verheest, Waves in Dusty Space Plasma (Kluwer, Dordrecht, 2000) Google Scholar
  18. 18.
    S.V. Vladimirov, N.F. Cramer, Phys. Rev. E 54, 6762 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    D. Jovanovic, P.K. Shukla, Phys. Lett. 84, 4373 (2000) CrossRefGoogle Scholar
  20. 20.
    S. Hamaguchi, R.T. Farouki, Phys. Rev. E 49, 4430 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    S. Hamaguchi, R.T. Farouki, Phys. Plasmas 1, 21 (1994) CrossRefGoogle Scholar
  22. 22.
    P. Bandyopadhyay, G. Prasad, A. Sen, P.K. Kaw, Phys. Rev. Lett. 101, 065006 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Khrapak, A.V. Ivlev, V.V. Yaroshenko, G.E. Morfill, Phys. Rev. Lett. 102, 245004 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    P. Bandyopadhyay, U. Konopka, S.A. Khrapak, G.E. Morfill, A. Sen, New J. Phys. 12, 073002 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Mamun, K.S. Ashrafi, P.K. Shukla, Phys. Rev. E 82, 026405 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    K.S. Ashrafi, A.A. Mamun, P.K. Shukla, Europhys. Lett. 92, 15004 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    M. Asaduzzaman, A.A. Mamun, K.S. Ashrafi, Phys. Plasmas 18, 113704 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    A. Hasegawa et al., Phys. Rev. Lett. 54, 2608 (1985) ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Hellberg et al., Space Sci. Rev. 121, 127 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968) ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang et al., Phys. Plasmas 21, 032111 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    T. Kaladze, S. Mahmood, Phys. Plasmas 21, 032306 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    A. Panwar et al., Phys. Plasmas 21, 122105 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    N.S. Saini, P. Sethi, Phys. Plasmas 23, 103702 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    N.S. Saini, K. Singh, Phys. Plasmas 23, 103701 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    K. Singh et al., Phys. Plasmas 24, 063703 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    K. Singh et al., Phys. Plasmas 25, 033705 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    N.S. Saini et al., Phys. Plasmas 16, 062903 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Hellberg et al., Phys. Plasmas 16, 094701 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    C.K. Goertz, O. Havnes, Geophys. Res. Lett. 15, 84 (1988) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations