Advertisement

The effect of chalcogen and metal on the electronic properties and stability of metal–chalcogenides clusters, TM6Xn(PH3)6 (TM = Mo, Cr, Re, Co, Ni; X = Se, Te; n = 8,5)

  • Arthur C. Reber
  • Shiv N. Khanna
Regular Article
  • 21 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

We have performed a comparative study of the electronic structure, stability, and magnetic properties of a series of metal–chalcogen clusters stabilized by PH3 ligands. Clusters studied include TM6X8(PH3)6, TM = Cr, Mo, Re, Co, X = Se, Te, and Ni6X(PH3)6, X = Se, and Te. We find that the phosphine ligands act as charge donors, transferring charge to the metal sites, creating an electrostatic effect that lowers the ionization energy. The electronic structure of the cluster also has a significant effect on its charge donor properties, as the Re cluster has a closed electronic shell with a charge state of +2, making it an alkaline earth superatom. The chromium clusters are found to have a series of close lying magnetic isomers. Selenium is a better charge acceptor than tellurium and this causes the telluride clusters to have lower ionization potentials, while the enhanced charge transfer to selenium increases the binding energy of the phosphine ligand.

Graphical abstract

References

  1. 1.
    S.A. Claridge, A.W. Castleman, S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, ACS Nano 3, 244 (2009) CrossRefGoogle Scholar
  2. 2.
    S.N. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    S. Mandal, A.C. Reber, M. Qian, P.S. Weiss, S.N. Khanna, A. Sen, Acc. Chem. Res. 46, 2385 (2013) CrossRefGoogle Scholar
  4. 4.
    X. Roy, C.-H. Lee, A.C. Crowther, C.L. Schenck, T. Besara, R.A. Lalancette, T. Siegrist, P.W. Stephens, L.E. Brus, P. Kim, M.L. Steigerwald, C. Nuckolls, Science 341, 157 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    A.C. Reber, S.N. Khanna, Acc. Chem. Res. 50, 255 (2017) CrossRefGoogle Scholar
  6. 6.
    I.M.L. Billas, A. Châtelain, W.A. de Heer, Science 265, 1682 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Pederson, S.N. Khanna, Phys. Rev. B 60, 9566 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Roach, W.H. Woodward, A.W. Castleman, A.C. Reber, S.N. Khanna, Science 323, 492 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    L. Ma, K.A. Jackson, J. Wang, M. Horoi, J. Jellinek, Phys. Rev. B 89, 035429 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    W.H. Woodward, A.C. Reber, J.C. Smith, S.N. Khanna, A.W. Castleman, J. Phys. Chem. C 117, 7445 (2013) CrossRefGoogle Scholar
  11. 11.
    K.A. Jackson, M. Yang, I. Chaudhuri, T. Frauenheim, Phys. Rev. A 71, 033205 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    G. Kwon, G.A. Ferguson, C.J. Heard, E.C. Tyo, C. Yin, J. DeBartolo, S. Seifert, R.E. Winans, A.J. Kropf, J. Greeley, R.L. Johnston, L.A. Curtiss, M.J. Pellin, S. Vajda, ACS Nano 7, 5808 (2013) CrossRefGoogle Scholar
  13. 13.
    E.T. Baxter, M.-A. Ha, A.C. Cass, A.N. Alexandrova, S.L. Anderson, ACS Catal. 7, 3322 (2017) CrossRefGoogle Scholar
  14. 14.
    W.H. Blades, A.C. Reber, S.N. Khanna, L. López-Sosa, P. Calaminici, A.M. Köster, J. Phys. Chem. A 121, 2990 (2017) CrossRefGoogle Scholar
  15. 15.
    M. Qian, A.C. Reber, A. Ugrinov, N.K. Chaki, S. Mandal, H.M. Saavedra, S.N. Khanna, A. Sen, P.S. Weiss, ACS Nano 4, 235 (2009) CrossRefGoogle Scholar
  16. 16.
    E.S. O’Brien, M.T. Trinh, R.L. Kann, J. Chen, G.A. Elbaz, A. Masurkar, T.L. Atallah, M.V. Paley, N. Patel, D.W. Paley, I. Kymissis, A.C. Crowther, A.J. Millis, D.R. Reichman, X.-Y. Zhu, X. Roy, Nat. Chem. 9, 1170 (2017) CrossRefGoogle Scholar
  17. 17.
    S.N. Khanna, A.C. Reber, Nat. Chem. 9, 1151 (2017) CrossRefGoogle Scholar
  18. 18.
    B. Choi, J. Yu, D.W. Paley, M.T. Trinh, M.V. Paley, J.M. Karch, A.C. Crowther, C.-H. Lee, R.A. Lalancette, X. Zhu, P. Kim, M.L. Steigerwald, C. Nuckolls, X. Roy, Nano Lett. 16, 1445 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    J. Yu, C.-H. Lee, D. Bouilly, M. Han, P. Kim, M.L. Steigerwald, X. Roy, C. Nuckolls, Nano Lett. 16, 3385 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Champsaur, C. Mézière, M. Allain, D.W. Paley, M.L. Steigerwald, C. Nuckolls, P. Batail, J. Am. Chem. Soc. 139, 11718 (2017) CrossRefGoogle Scholar
  21. 21.
    A.M. Champsaur, A. Velian, D.W. Paley, B. Choi, X. Roy, M.L. Steigerwald, C. Nuckolls, Nano Lett. 16, 5273 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    A.C. Reber, S.N. Khanna, NPJ Comput. Mater. 4, 33 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    C.-H. Lee, L. Liu, C. Bejger, A. Turkiewicz, T. Goko, C.J. Arguello, B.A. Frandsen, S.C. Cheung, T. Medina, T.J.S. Munsie, R. D’Ortenzio, G.M. Luke, T. Besara, R.A. Lalancette, T. Siegrist, P.W. Stephens, A.C. Crowther, L.E. Brus, Y. Matsuo, E. Nakamura, Y.J. Uemura, P. Kim, C. Nuckolls, M.L. Steigerwald, X. Roy, J. Am. Chem. Soc. 136, 16926 (2014) CrossRefGoogle Scholar
  24. 24.
    V. Chauhan, S. Sahoo, S.N. Khanna, J. Am. Chem. Soc. 138, 1916 (2016) CrossRefGoogle Scholar
  25. 25.
    V. Chauhan, A.C. Reber, S.N. Khanna, J. Phys. Chem. A 120, 6644 (2016) CrossRefGoogle Scholar
  26. 26.
    A.C. Reber, V. Chauhan, S.N. Khanna, J. Chem. Phys. 146, 024302 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    D. Fenske, J. Ohmer, Angew. Chem. Int. Ed. Engl. 26, 148 (1987) CrossRefGoogle Scholar
  28. 28.
    O. Cador, H. Cattey, J.-F. Halet, W. Meier, Y. Mugnier, J. Wachter, J.-Y. Saillard, B. Zouchoune, M. Zabel, Inorg. Chem. 46, 501 (2007) CrossRefGoogle Scholar
  29. 29.
    H. Brunner, H. Cattey, W. Meier, Y. Mugnier, A.C. Stückl, J. Wachter, R. Wanninger, M. Zabel, Chem. Eur. J. 9, 3796 (2003) CrossRefGoogle Scholar
  30. 30.
    A. Ebner, J. Wachter, M. Zabel, J. Clust. Sci. 15, 163 (2004) CrossRefGoogle Scholar
  31. 31.
    G. Shafai, S. Hong, M. Bertino, T.S. Rahman, J. Phys. Chem. C 113, 12072 (2009) CrossRefGoogle Scholar
  32. 32.
    P.A. Clayborne, O. Lopez-Acevedo, R.L. Whetten, H. Grönbeck, H. Häkkinen, J. Chem. Phys. 135, 094701 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    C.M. Aikens, J. Phys. Chem. Lett. 2, 99 (2011) CrossRefGoogle Scholar
  34. 34.
    M.B. Abreu, C. Powell, A.C. Reber, S.N. Khanna, J. Am. Chem. Soc. 134, 20507 (2012) CrossRefGoogle Scholar
  35. 35.
    B. Choi, D.W. Paley, T. Siegrist, M.L. Steigerwald, X. Roy, Inorg. Chem. 54, 8348 (2015) CrossRefGoogle Scholar
  36. 36.
    Z. Luo, A.C. Reber, M. Jia, W.H. Blades, S.N. Khanna, A.W. Castleman, Chem. Sci. 7, 3067 (2016) CrossRefGoogle Scholar
  37. 37.
    Y. Yang, C. E Castano, B. Frank Gupton, A.C. Reber, S.N. Khanna, Nanoscale 8, 19564 (2016) CrossRefGoogle Scholar
  38. 38.
    A.C. Reber, S.N. Khanna, J. Phys. Chem. C 121, 21527 (2017) CrossRefGoogle Scholar
  39. 39.
    V. Chauhan, A.C. Reber, S. N. Khanna, Phys. Chem. Chem. Phys. 19, 31940 (2017) CrossRefGoogle Scholar
  40. 40.
    Y. Yang, A.C. Reber, S.E. Gilliland, C.E. Castano, B.F. Gupton, S.N. Khanna, J. Catal. 360, 20 (2018) CrossRefGoogle Scholar
  41. 41.
    V. Chauhan, A.C. Reber, S.N. Khanna, Nat. Commun. 9, 2357 (2018) ADSCrossRefGoogle Scholar
  42. 42.
    V. Chauhan, A.C. Reber, S.N. Khanna, J. Am. Chem. Soc. 139, 1871 (2017) CrossRefGoogle Scholar
  43. 43.
    J.L. Shott, M.B. Freeman, N.-A. Saleh, D.S. Jones, D.W. Paley, C. Bejger, Inorg. Chem. 56, 10984 (2017) CrossRefGoogle Scholar
  44. 44.
    A. Pinkard, A.M. Champsaur, X. Roy, Acc. Chem. Res. 51, 919 (2018) CrossRefGoogle Scholar
  45. 45.
    G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001) CrossRefGoogle Scholar
  46. 46.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  47. 47.
    E. van Lenthe, J.G. Snijders, E.J. Baerends, J. Chem. Phys. 105, 6505 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    M.L. Steigerwald, T. Siegrist, S.M. Stuczynski, Inorg. Chem. 30, 4940 (1991) CrossRefGoogle Scholar
  49. 49.
    D. Fenske, J. Hachgenei, J. Ohmer, Angew. Chem. Int. Ed. Engl. 24, 706 (1985) CrossRefGoogle Scholar
  50. 50.
    T. Saito, N. Yamamoto, T. Nagase, T. Tsuboi, K. Kobayashi, T. Yamagata, H. Imoto, K. Unoura, Inorg. Chem. 29, 764 (1990) CrossRefGoogle Scholar
  51. 51.
    Z. Zheng, T.G. Gray, R.H. Holm, Inorg. Chem. 38, 4888 (1999) CrossRefGoogle Scholar
  52. 52.
    B.M. Boardman, J.R. Widawsky, Y.S. Park, C.L. Schenck, L. Venkataraman, M.L. Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 133, 8455 (2011) CrossRefGoogle Scholar
  53. 53.
    S. Kamiguchi, H. Imoto, T. Saito, T. Chihara, Inorg. Chem. 37, 6852 (1998) CrossRefGoogle Scholar
  54. 54.
    B. Hessen, T. Siegrist, T. Palstra, S.M. Tanzler, M.L. Steigerwald, Inorg. Chem. 32, 5165 (1993) CrossRefGoogle Scholar
  55. 55.
    H. Metiu, S. Chrétien, Z. Hu, B. Li, X. Sun, J. Phys. Chem. C 116, 10439 (2012) CrossRefGoogle Scholar
  56. 56.
    A.C. Reber, S.N. Khanna, J. Phys. Chem. C 118, 20306 (2014) CrossRefGoogle Scholar
  57. 57.
    N.D. Lang, Phys. Rev. B 4, 4234 (1971) ADSCrossRefGoogle Scholar
  58. 58.
    T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Phys. Rev. B 68, 195408 (2003) ADSCrossRefGoogle Scholar
  59. 59.
    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, Science 336, 327 (2012) ADSCrossRefGoogle Scholar
  60. 60.
    F.S. Roberts, S.L. Anderson, A.C. Reber, S.N. Khanna, J. Phys. Chem. C 119, 6033 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations