Advertisement

Effects of electronic stopping power on fast-ion-induced secondary ion emission from methanol microdroplets

  • Kensei Kitajima
  • Hidetsugu Tsuchida
  • Takuya Majima
  • Manabu Saito
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

The formation processes of secondary ions in liquid materials were studied for methanol microdroplets bombarded by carbon ions with incident energies of 0.4–4.0 MeV, where the corresponding electronic stopping power ranged 300–800 eV nm−1. Positive and negative secondary ions including molecular fragments, methanol clusters, and reaction products were investigated, and each ion yield was examined as a function of electronic stopping power Se. We observed different Se-dependence on the emission yields between positive and negative ions. For positive cluster ions [(CH3OH)n + H]+ (n = 2−10), the yield nonlinearly increases and follows the power-law Seα with α = 3. For negative secondary ions, the value of α varies according to secondary ion species or ion mass: α ≈ 0 for fragments with small mass (CH, CH2, and OH), α = 0.5–1.5 for reaction products with medium mass(C2, C2H, C2HO, and C2H5O), and α = 1.2−1.5 for clusters with large mass [(CH3OH)n – H] (n = 1−25). The latter finding implies that the value of α is a quantity related to the electronic energy density depending on the distance from the ion trajectory.

Graphical abstract

References

  1. 1.
    A. Mozumder, Fundamentals of Radiation Chemistry (Academic Press, San Diego, 1999) Google Scholar
  2. 2.
    F. Mafuné, J. Kohno, T. Kondow, J. Phys. Chem. 100, 10041 (1996) CrossRefGoogle Scholar
  3. 3.
    J. Kohno, N. Toyama, T. Kondow, Chem. Phys. Lett. 420, 146 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    M. Kaneda, M. Shimizu, T. Hayakawa, A. Nishimura, Y. Iriki, H. Tsuchida, M. Imai, H. Shibata, A. Itoh, Nucl. Inst. Methods B 267, 908, (2009) ADSCrossRefGoogle Scholar
  5. 5.
    M. Kaneda, M. Shimizu, T. Hayakawa, Y. Iriki, H. Tsuchida, A. Itoh, J. Chem. Phys. 132, 144502 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    S. Nomura, H. Tsuchida, R. Furuya, K. Miyahara, T. Majima, A. Itoh, Nucl. Inst. Methods B 365, 611 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    S. Nomura, H. Tsuchida, R. Furuya, T. Majima, A. Itoh, Nucl. Inst. Methods B 389, 28 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    S. Nomura, H. Tsuchida, A. Kajiwara, S. Yoshida, T. Majima, M. Saito, J. Chem. Phys. 147, 225103 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    T. Majima, K. Kitajima, T. Nishio, H. Tsuchida, A. Itoh, J. Phys.: Conf. Ser. 635, 012021 (2015) Google Scholar
  10. 10.
    K. Kitajima, T. Majima, T. Nishio, Y. Oonishi, S. Mizutani, J. Kohno, M. Saito, H. Tsuchida, Nucl. Inst. Methods B 424, 10 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    A. Hedin, P. Håkansson, M. Salehpour, B.U.R. Sundqvist, Phys. Rev. B 35, 7377 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Johnson, B.U.R. Sundqvist, Phys. Today 45, 3 (1992) CrossRefGoogle Scholar
  13. 13.
    G.C. Almeida, D.P.P. Andrade, C. Arantes, A.M. Nazareth, H.M. Boechat-Roberty, M.L.M. Rocco, J. Phys. Chem. C 116, 25388 (2012) CrossRefGoogle Scholar
  14. 14.
    D.P.P. Andrade, M.L.M. Rocco, H.M. Boechat-Roberty, MNRAS 409, 1289 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    A.L.F. de Barros, A. Domaracka, D.P.P. Andrade, P. Boduch, H. Rothard, E.F. da Silveira, MNRAS 418, 1363 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    J.D. Smith, C.D. Cappa, W.S. Drisdell, R.C. Cohen, R.J. Saykally, J. Am. Chem. Soc. 128, 12892 (2006) CrossRefGoogle Scholar
  17. 17.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69 March 2003 Release, https://doi.org/webbook.nist.gov/chemistry
  18. 18.
    J.H. Baxendale, P. Wardman, The Radiolysis of Methanol: Product Yields, Rate Constants, and Spectroscopic Parameters of Intermediates, NSRDS-NBS Vol. 54, U.S. Govt. Printing Office, Washington, D.C. (1975) Google Scholar
  19. 19.
    M.V. Kosevich, G. Czira, O.A. Borak, V.S. Shelkovsky, K. Vékey, Rapid. Commun. Mass Spectrom. 11, 1411 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter (SRIM Co., Chester, Maryland, 2008) Google Scholar
  21. 21.
    A.L.F. de Barros, L.S. Farenzena, D.P.P. Andrade, E.F. da Silveira, K. Wien, J. Phys. Chem. C 115, 12005 (2011) CrossRefGoogle Scholar
  22. 22.
    R.E. Johnson, B.U.R. Sundqvist, A. Hedin, D. Fenyö, Phys. Rev. B 40, 49 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    R.E. Johnson, Int. J. Mass Spectrom. 78, 357 (1987) ADSCrossRefGoogle Scholar
  24. 24.
    E. Surdutovich, A. Verkhovtsev, A.V. Solov’yov, Eur. Phys. J. D 71, 285 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    P.A. Ingemarsson, A. Hedin, B.U.R. Sundqvist, T.A. Tombrello, R.E. Johnson, Radiat. Eff. Def. Solids 108, 205 (1989) CrossRefGoogle Scholar
  26. 26.
    A. Hedin, P. Håkansson, B.U.R. Sundqvist, R.E. Johnson, Phys. Rev. B 31, 1780 (1985) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kensei Kitajima
    • 1
  • Hidetsugu Tsuchida
    • 1
    • 2
  • Takuya Majima
    • 1
    • 2
  • Manabu Saito
    • 1
  1. 1.Department of Nuclear EngineeringKyoto UniversityNishikyo-ku, KyotoJapan
  2. 2.Quantum Science and Engineering Center, Kyoto UniversityGokasho, Uji, KyotoJapan

Personalised recommendations