Dynamics of resonant energy transfer in one-dimensional chain of Rydberg atoms

  • Maninder Kaur
  • Paramjit Kaur
  • Bijaya K. Sahoo
  • Bindiya AroraEmail author
Regular Article


We study resonant energy transfer in a one-dimensional chain of two to five atoms by analyzing time-dependent probabilities as function of their interatomic distances. The dynamics of the system are first investigated by including the nearest-neighbour interactions and then accounting for all next-neighbour interactions. We find that inclusion of nearest-neighbour interactions in the Hamiltonian for three atoms chain exhibits periodicity during the energy transfer dynamics; however, this behavior displays aperiodicity with the all-neighbour interactions. It shows for the equidistant chains of four and five atoms the peaks are always irregular but regular peaks are retrieved when the inner atoms are placed closer than the atoms at both the ends. In this arrangement, the energy transfer swings between the atoms at both ends with very low probability of finding an atom at the center. This phenomenon resembles with quantum notion of Newton’s cradle. We also find out the maximum distance up to which energy could be transferred within the typical lifetimes of the Rydberg states.

Graphical abstract


Atomic Physics 


  1. 1.
    T.F. Gallagher, Rydberg Atoms, Cambridge Monographs on Atomic, Molecular and Chemical Physics (Cambridge University Press, Cambridge, 1994) Google Scholar
  2. 2.
    M.L. Zimmerman, M.G. Littman, M.M. Kash, D. Kleppner, Phys. Rev. A 20, 2251 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Gnedin, A. Mihajlov, L. Ignjatović, N. Sakan, V. Srećković, M. Zakharov, N. Bezuglov, A. Klycharev, New Astron. Rev. 53, 259 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    N.D. Guise, J.N. Tan, S.M. Brewer, C.F. Fischer, P. Jönsson, Phys. Rev. A 89, 040502 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    J. Neukammer, H. Rinneberg, U. Majewski, Phys. Rev. A 30, 1142 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    G. Vitrant, J.M. Raimond, M. Gross, S. Haroche, J. Phys. B: At. Mol. Opt. Phys. 15, L49 (1982) ADSCrossRefGoogle Scholar
  7. 7.
    D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    K.A. Safinya, J.F. Delpech, F. Gounand, W. Sandner, T.F. Gallagher, Phys. Rev. Lett. 47, 405 (1981) ADSCrossRefGoogle Scholar
  9. 9.
    R.C. Stoneman, M.D. Adams, T.F. Gallagher, Phys. Rev. Lett. 58 1324 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    T. Linneweber, J. Stolze, G.S. Uhrig, Int. J. Quantum Inf. 10, 1250029 (2012) CrossRefGoogle Scholar
  11. 11.
    S. Lorenzo, T.J.G. Apollaro, A. Sindona, F. Plastina, Phys. Rev. A 87, 042313 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    S. Lorenzo, T.J.G. Apollaro, S. Paganelli, G.M. Palma, F. Plastina, Phys. Rev. A 91, 042321 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    G.M.A. Almeida, F. Ciccarello, T.J.G. Apollaro, A.M.C. Souza, Phys. Rev. A 93, 032310 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    M.R. Flannery, D. Vrinceanu, V.N. Ostrovsky, J. Phys. B: At. Mol. Opt. Phys. 38, S279 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    A. Reinhard, T.C. Liebisch, B. Knuffman, G. Raithel, Phys. Rev. A 75, 032712 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    K. Singer, J. Stanojevic, M. Weidemüller, R. Cote, J. Phys. B: At. Mol. Opt. Phys. 38, S295 (2005) CrossRefGoogle Scholar
  17. 17.
    T. Förster, in Modern Quantum Chemistry, edited by O. Sinanoglu (Academic Press, New York, 1996) Google Scholar
  18. 18.
    S. Westermann, T. Amthor, A. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, M. Weidemüller, Eur. Phys. J. D 40, 37 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    D. Comparat, P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Jackson, in Classical Electrodynamics, 3rd edn. (John Wiley & Sons Inc., New York, 1999), pp. xxii+808 Google Scholar
  21. 21.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Phys. Rev. Lett. 80, 249 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    G. Günter, H. Schempp, M. Robert-de Saint-Vincent, V. Gavryusev, S. Helmrich, C.S. Hofmann, S. Whitlock, M. Weidemüller, Science 342, 954 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, A. Browaeys, Phys. Rev. Lett. 112, 183002 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C.S. Adams, Phys. Rev. Lett. 114, 113002 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    W. Maineult, B. Pelle, R. Faoro, E. Arimondo, P. Pillet, P.Cheinet, J. Phys. B: At. Mol. Opt. Phys. 49, 214001 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    G.D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    T. Ritz, A. Damjanović, K. Schulten, Chem. Phys. Chem. 3, 243 (2002) CrossRefGoogle Scholar
  28. 28.
    P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, C. Gross, Science 347, 1455 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    C.B. Hito, M. Silva, A.B. de Magalhães, Phys. Lett. A 382, 894 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    K. Blum, in Density Matrix Theory and Applications, 3rd edn. (Springer, Berlin, 2012), pp. xviii+343 Google Scholar
  31. 31.
    F. Gounand, J. Phys. France 40, 457 (1979) CrossRefGoogle Scholar
  32. 32.
    D.B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R.O. Wilson, M. Zheng, A. Kortyna, D.A. Tate, J. Phys. B: At. Mol. Opt. Phys. 43, 015002 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maninder Kaur
    • 1
  • Paramjit Kaur
    • 1
  • Bijaya K. Sahoo
    • 2
  • Bindiya Arora
    • 1
    Email author
  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Atomic, Molecular and Optical Physics Division, Physical Research LaboratoryNavrangpuraIndia

Personalised recommendations