Advertisement

Dependence of electronic structures of multi-walled boron nitride nanotubes on layer numbers

  • Jiuxu Song
  • Hongxia Liu
  • Wenjuan Shen
Regular Article
  • 27 Downloads

Abstract

By using first-principle calculations based on density functional theory, the electronic structures of multi-walled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated. Band shifts between the two layers of the double-walled nanotubes narrow their band gaps and form significant coupling. With the increase of the layer number of the multi-walled BNNTs, the similarity of the electronic structures for the two outer layers is enhanced obviously and the influence of band shift is weakened. Electronic structures of the BNNTs formed with more than three layers are not sensitive to their layer numbers. These results are meaningful for the application researches of BNNTs.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, T. Tamiya, H. Yusa, Appl. Phys. Lett. 69, 2045 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    W.Q. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73, 3085 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Chen, J. Zou, S.J. Campbell, G.L. Caer, Appl. Phys. Lett. 84, 2430 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    J.H. Choi, J. Kim, D. Seo, Y.S. Seo, Mater. Res. Bull. 48, 1197 (2013) CrossRefGoogle Scholar
  8. 8.
    P. Ahmad, M.U. Khandaker, Y.M. Amin, Physica E 67, 33 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan, M. Wei, E.H.T. Teo, Chem. Mater. 27, 7156 (2015) CrossRefGoogle Scholar
  10. 10.
    L. Wang, T. Li, L. Ling, J. Luo, K. Zhang, Y. Xu, H. Lu, Y. Yao, Chem. Phys. Lett. 652, 27 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    C.W. Chen, M.H. Lee, S.J. Clark, Nanotechnology 15, 1837 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Li, Z. Zhou, D. Golberg, Y. Bando, P.R. Von Schleyer, Z. Chen, J. Phys. Chem. C 112, 1365 (2008) CrossRefGoogle Scholar
  13. 13.
    Y.M. Chou, H.W. Wang, Y.J. Lin, W.H. Chen, B.C. Wang, Diamond Relat. Mater. 18, 351 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Zheng, L.P. Zhang, P. Wu, J. Phys. Chem. C 114, 5792 (2010) CrossRefGoogle Scholar
  15. 15.
    R. Chegel, S. Behzad, Solid State Commun. 115, 259 (2010) Google Scholar
  16. 16.
    S. Sharma, P. Rani, A.S. Verma, V.K. Jindal, Solid State Commun. 152, 802 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    M.Monajjemi, M.S. Hosseini, F. Molaamin, Fullerenes Nanotubes Carbon Nanostruct. 21, 381 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    M. Bagheri, A. Bahari, M. Amiri, B. Dehbandi, Solid State Commun. 189, 1 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Moradi, S. Hashemian, A.A. Peyghan, M.T. Baei, Fullerenes Nanotubes Carbon Nanostruct. 23, 62 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    R. Ansari, M. Mirnezhad, S. Sahmani, Superlattices Microstruct. 80, 196 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    Z.Y. Deng, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 347, 485 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    S.H. Jhi, D.J. Roundy, S.G. Louie, M.L. Cohen, Solid State Commun. 134, 397 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    S. Okada, S. Saito, A. Oshiyama, Phys. Rev. B 65, 165410 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    S. Okada, S. Saito, A. Oshiyama, Physica B 323, 224 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    A.M. Nejad, M. Monajjemi, J. Comput. Theor. Nanosci.12, 3902 (2015) CrossRefGoogle Scholar
  26. 26.
    E. Brito, A. Freitas, T. Silva, T. Guerra, S. Azevedo, Eur. Phys. J. B 88, 153 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    M. Soto, T.A. Boyer, S. Biradar, L. Ge, R. Vajtai, A. Elías-Zúñiga, P.M. Ajayan, E.V. Barrera, Nanotechnology 26, 165201 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    K. Adhikari, A.K. Ray, Solid State Commun. 151, 430 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    M. Yu, C.S. Jayanthi, S.Y. Wu, Phys. Rev. B. 82, 075407 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    J. Cumings, A. Zettl, Chem. Phys. Lett. 316, 211 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Chadi, Phys. Rev. B 16, 5188 (1977) Google Scholar
  34. 34.
    A. Ansari, M. Faghihnasiri, S. Malakpour, S. Sahmani, Superlattices Microstruct. 83, 498 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    B.G. Demczyk, J. Cumings, A. Zettl, Appl. Phys. Lett. 78, 2772 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    J.F. Jia, H.S. Wu, H, Jiao, Physica B 381, 90 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Engineering, Xi’an Shiyou UniversityXi’anP.R. China
  2. 2.Xi’an Institute of Microelectronic TechnologyXi’anP.R. China
  3. 3.School of Engineering and Information Technology, Murdoch UniversityPerthAustralia

Personalised recommendations