Advertisement

Questioning the structure of Sr+Arn clusters

  • Florent Calvo
  • Rafika Hamdi
  • Leila Mejrissi
  • Brahim Oujia
Regular Article
  • 15 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

The stable structures of argon clusters doped with a strontium cation were computationally determined using a many-body polarizable potential fitted to reproduce highly accurate electronic structure calculations at the coupled cluster level of theory. The basin-hopping global optimization method was employed to locate putative lowest energy structures of Sr+Arn clusters with n < 160, and the effects of zero-point energy corrections and of possible entropy-driven structural transitions were accounted for in the (quantum) harmonic approximation. The results suggest an overall icosahedral growth pattern over the investigated size range, with the strontium cation being generally twelvefold coordinated by argon atoms also arranged into an icosahedron. However, the strain between the first coordination shell and the remaining cluster is significant, with the cation not always residing at the center of the cluster despite being much more strongly bound. As a result, non-icosahedral coordination shells are also occasionally found with local decahedral or cubic arrangements. This structural diversity could explain the relative discrepancies with existing mass spectrometry abundances.

Graphical abstract

References

  1. 1.
    J.K. Lee, J.A. Barker, F.F. Abraham, J. Chem. Phys. 58, 3166 (1973) ADSCrossRefGoogle Scholar
  2. 2.
    O.F. Hagena, Surf. Sci. 106, 101 (1981) ADSCrossRefGoogle Scholar
  3. 3.
    R.B. McClurg, R.C. Flagan, and W.A. Goddard III, J. Chem. Phys. 105, 7648 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    K. Laasonen, S. Wonczak, R. Strey, A. Laaksonen, J. Chem. Phys. 113, 9741 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    M. Chergui, Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems (World Scientific, Singapore, 1996) Google Scholar
  6. 6.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987) CrossRefGoogle Scholar
  7. 7.
    T.L. Beck, J. Jellinek, R.S. Berry, J. Chem. Phys. 87, 545 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    H.-P. Cheng, R.S. Berry, Phys. Rev. A 45, 7969 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997) CrossRefGoogle Scholar
  10. 10.
    J.P. Neirotti, F. Calvo, D.L. Freeman, J. D. Doll, J. Chem. Phys. 112, 10340 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    A.H. Zewail, in Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994), Vols. I and II Google Scholar
  12. 12.
    J.P.K. Doye, F. Calvo, Phys. Rev. Lett. 86, 3570 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    L.D. Marks, Philos. Mag. 49, 81 (1984) ADSCrossRefGoogle Scholar
  14. 14.
    C. Lüder, D. Prekas, M. Velegrakis, Laser Chem. 17, 109 (1997) CrossRefGoogle Scholar
  15. 15.
    D. Prekas, C. Lüder, M. Velegrakis, J. Chem. Phys. 108, 4450 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    M. Froudakis, S.C. Farantos, M.J. Velegrakis, Chem. Phys. 258, 13 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, P. Scheier, Chem. Eur. J. 18, 4411 (2012) CrossRefGoogle Scholar
  18. 18.
    F. Marinetti, E. Coccia, E. Bodo, F.A. Gianturco, E. Yurtsever, M. Yurtsever, E. Yildirim, Theor. Chem. Acc. 118, 53 (2007) CrossRefGoogle Scholar
  19. 19.
    N. Issaoui, K. Abdessalem, H. Ghalla, S.J. Yaghmour, F. Calvo, B. Oujia, J. Chem. Phys. 141, 174316 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    C. Lüder, M. Velegrakis, J. Chem. Phys. 105, 2167 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    G.S. Fanourgakis, S.C. Farantos, Ch. Lüder, M. Velegrakis, S. S. Xantheas, J. Chem. Phys. 109, 108 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    W. Miehle, O. Kandler, T. Leisner, O. Echt, J. Chem. Phys. 91, 5940 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    M. Ben El Hadj Rhouma, F. Calvo, F. Spiegelman, J. Phys. Chem. A 110, 5010 (2006) CrossRefGoogle Scholar
  24. 24.
    A.M. Gardner, C.D. Withers, T.G. Wright, K.I. Kaplan, C.Y.N. Chapman, L.A. Viehland, E.P.F. Lee, W.H. Breckenridge, J. Chem. Phys. 132, 054302 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    D. Bochicchio, R. Ferrando, Phys. Rev. B 87, 165435 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    P. Schwerdtfeger, N. Gaston, R.P. Krawczyk, R. Tonner, G.E. Moyano, Phys. Rev. B 73, 064112 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    F. Calvo, J.P.K. Doye, D.J. Wales, J. Chem. Phys. 114, 7312 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    J. Farges, M.-F. de Feraudy, B. Raoult, G. Torchet, Surf. Sci. 156, 370 (1985) ADSCrossRefGoogle Scholar
  29. 29.
    P. J. Steinhardt, D. R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    F. Calvo, F. Chirot, F. Albrieux, J. Lemoine, Y.O. Tsybin, P. Pernot, P. Dugourd, J. Am. Soc. Mass Spectrom. 23, 1279 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Florent Calvo
    • 1
  • Rafika Hamdi
    • 2
  • Leila Mejrissi
    • 2
  • Brahim Oujia
    • 3
  1. 1.University Grenoble Alpes, LiPhy, and CNRS, LiPhyGrenobleFrance
  2. 2.Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Avenue de l’EnvironnementMonastirTunisia
  3. 3.University of Jeddah, Faculty of Science, Physics DepartmentJeddahKingdom of Saudi Arabia

Personalised recommendations