Advertisement

Helium nanodroplets doped with copper and water

  • Stefan Raggl
  • Norbert Gitzl
  • Paul Martini
  • Paul Scheier
  • Olof Echt
Open Access
Regular Article
  • 73 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Copper nanoparticles are promising, low-cost candidates for the catalytic splitting of water and production of hydrogen gas. The present gas-phase study, based on the synthesis of copper-water complexes in ultracold helium nanodroplets followed by electron ionization, attempts to find evidence for dissociative water adsorption and H2 formation. Mass spectra show that H2O–Cu complexes containing dozens of copper and water molecules can be formed in the helium droplets. However, ions that would signal the production and escape of H2, such as (H2O)n−2(OH)2Cum+ or the isobaric (H2O)n−1OCum+, could not be detected. We do observe an interesting anomaly though: While the abundance of stoichiometric (H2O)nCum+ ions generally exceeds that of protonated or dehydrogenated ions, the trend is reversed for (H2O)OHCu2+ and (H2O)2OHCu2+; these ions are more abundant than (H2O)2Cu2+ and (H2O)3Cu2+, respectively. Moreover, (H2O)2OHCu2+ is much more abundant than other ions in the (H2O)n−1OHCu2+ series. A byproduct of our experiment is the observation of enhanced stability of He6Cu+, He12Cu+, He24Cu+, and He2Cu2+.

Graphical abstract

References

  1. 1.
    Z.X. Yang, L.G. Xie, D.W. Ma, G.T. Wang, J. Phys. Chem. C 115, 6730 (2011) CrossRefGoogle Scholar
  2. 2.
    J. Xiong, X.D. Wu, Q.J. Xue, J. Colloid Interface Sci. 390, 41 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    N.K. Das, S. Ghosh, A. Priya, S. Datta, S. Mukherjee, J. Phys. Chem. C 119, 24657 (2015) CrossRefGoogle Scholar
  4. 4.
    T. Kruk, K. Szczepanowicz, J. Stefanska, R.P. Socha, P. Warszynski, Colloids Surf. B-Biointerfaces 128, 17 (2015) CrossRefGoogle Scholar
  5. 5.
    Z.K. He, J.W. Fu, B. Cheng, J.G. Yu, S.W. Cao, Appl. Catal. B-Environ. 205, 104 (2017) CrossRefGoogle Scholar
  6. 6.
    Y.P. Liu et al., Adv. Mater. 29 (2017) Google Scholar
  7. 7.
    G. Hultquist, M.J. Graham, O. Kodra, S. Moisa, R. Liu, U. Bexell, J.L. Smialek, Corros. Sci. 95, 162 (2015) CrossRefGoogle Scholar
  8. 8.
    A.J. Johansson, C. Lilja, T. Brinck, J. Chem. Phys. 135, 084709 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    C.M. Lousada, A.J. Johansson, P.A. Korzhavyi, J. Phys. Chem. C 119, 14102 (2015) CrossRefGoogle Scholar
  10. 10.
    K. Andersson, G. Ketteler, H. Bluhm, S. Yamamoto, H. Ogasawara, L.G.M. Pettersson, M. Salmeron, A. Nilsson, J. Am. Chem. Soc. 130, 2793 (2008) CrossRefGoogle Scholar
  11. 11.
    P. Kappen, J.D. Grunwaldt, B.S. Hammershoi, L. Troger, B.S. Clausen, J. Catal. 198, 56 (2001) CrossRefGoogle Scholar
  12. 12.
    M. Estrella et al., J. Phys. Chem. C 113, 14411 (2009) CrossRefGoogle Scholar
  13. 13.
    S. Huseyinova, J. Blanco, F.G. Requejo, J.M. Ramallo-Lopez, M.C. Blanco, D. Buceta, M.A. Lopez-Quintela, J. Phys. Chem. C 120, 15902 (2016) CrossRefGoogle Scholar
  14. 14.
    L. Chen et al., Phys. Chem. Chem. Phys. 12, 9845 (2010) CrossRefGoogle Scholar
  15. 15.
    J.H. Stenlid, A.J. Johansson, T. Brinck, Phys. Chem. Chem. Phys. 16, 2452 (2014) CrossRefGoogle Scholar
  16. 16.
    J.H. Stenlid, A.J. Johansson, L. Kloo, T. Brinck, J. Phys. Chem. C 120, 1977 (2016) CrossRefGoogle Scholar
  17. 17.
    M.L. Jiang, Q. Zeng, T.T. Zhang, M.L. Yang, K.A. Jackson, J. Chem. Phys. 136, 104501 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Holland, A.W. Castleman, J. Chem. Phys. 76, 4195 (1982) ADSCrossRefGoogle Scholar
  19. 19.
    T.F. Magnera, D.E. David, D. Stulik, R.G. Orth, H.T. Jonkman, J. Michl, J. Am. Chem. Soc. 111, 5036 (1989) CrossRefGoogle Scholar
  20. 20.
    N.F. Dalleska, K. Honma, L.S. Sunderlin, P.B. Armentrout, J. Am. Chem. Soc. 116, 3519 (1994) CrossRefGoogle Scholar
  21. 21.
    P.J.E. Boussard, P.E.M. Siegbahn, M. Svensson, Chem. Phys. Lett. 231, 337 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    A.M. El-Nahas, N. Tajima, K. Hirao, J. Mol. Struct. THEOCHEM 469, 201 (1999) CrossRefGoogle Scholar
  23. 23.
    D. Feller, E.D. Glendening, W.A. de Jong, J. Chem. Phys. 110, 1475 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Lee, S.K. Min, E.C. Lee, J.H. Min, S. Odde, K.S. Kim, J. Chem. Phys. 122, 064314 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Herr, R.P. Steele, J. Phys. Chem. A 120, 10252 (2016) CrossRefGoogle Scholar
  26. 26.
    T. Iino, K. Ohashi, Y. Mune, Y. Inokuchi, K. Judai, N. Nishi, H. Sekiya, Chem. Phys. Lett. 427, 24 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    T. Iino, K. Ohashi, K. Inoue, K. Judai, N. Nishi, H. Sekiya, J. Chem. Phys. 126, 194302 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    P.D. Carnegie, A.B. McCoy, M.A. Duncan, J. Phys. Chem. A 113, 4849 (2009) CrossRefGoogle Scholar
  29. 29.
    B.M. Marsh, J. Zhou, E. Garand, J. Phys. Chem. A 118, 2063 (2014) CrossRefGoogle Scholar
  30. 30.
    B.M. Marsh, J. Zhou, E. Garand, Phys. Chem. Chem. Phys. 17, 25786 (2015) CrossRefGoogle Scholar
  31. 31.
    A.F. Sweeney, J.T. O’Brien, E.R. Williams, P.B. Armentrout, Int. J. Mass Spectrom. 378, 270 (2015) CrossRefGoogle Scholar
  32. 32.
    A.F. Sweeney, P.B. Armentrout, J. Phys. Chem. A 118, 10210 (2014) CrossRefGoogle Scholar
  33. 33.
    V.A. Mikhailov, P.E. Barran, A.J. Stace, Phys. Chem. Chem. Phys. 1, 3461 (1999) CrossRefGoogle Scholar
  34. 34.
    G.E. Froudakis, M. Muhlhauser, S.C. Farantos, A. Sfounis, M. Velegrakis, Chem. Phys. 280, 43 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    H. Schöbel, P. Bartl, C. Leidlmair, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Eur. Phys. J. D 63, 209 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    S. Ralser, J. Postler, M. Harnisch, A.M. Ellis, P. Scheier, Int. J. Mass Spectrom. 379, 194 (2015) CrossRefGoogle Scholar
  38. 38.
    A. Mauracher, M. Daxner, J. Postler, S.E. Huber, S. Denifl, P. Scheier, J.P. Toennies, J. Phys. Chem. Lett. 5, 2444 (2014) CrossRefGoogle Scholar
  39. 39.
    O. Echt, D. Kreisle, M. Knapp, E. Recknagel, Chem. Phys. Lett. 108, 401 (1984) ADSCrossRefGoogle Scholar
  40. 40.
    S. Denifl et al., J. Chem. Phys. 132, 234307 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lutzenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001) ADSCrossRefGoogle Scholar
  42. 42.
    C.E. Klots et al., Z. Phys. D 21, 335 (1991) ADSCrossRefGoogle Scholar
  43. 43.
    K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999) ADSCrossRefGoogle Scholar
  44. 44.
    L. An der Lan, P. Bartl, C. Leidlmair, R. Jochum, S. Denifl, O. Echt, P. Scheier, Chem. Eur. J. 18, 4411 (2012) CrossRefGoogle Scholar
  45. 45.
    P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, J. Phys. Chem. A 118, 8050 (2014) CrossRefGoogle Scholar
  46. 46.
    T. Döppner, T. Diederich, S. Gode, A. Przystawik, J. Tiggesbäumker, K.H. Meiwes-Broer, J. Chem. Phys. 126, 244513 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    M. Goulart et al., Phys. Chem. Chem. Phys. 20, 9554 (2018) CrossRefGoogle Scholar
  48. 48.
    F. Tramonto, P. Salvestrini, M. Nava, D.E. Galli, J. Low Temp. Phys. 180, 29 (2015) ADSCrossRefGoogle Scholar
  49. 49.
    D. Prekas, C. Lüder, M. Velegrakis, J. Chem. Phys. 108, 4450 (1998) ADSCrossRefGoogle Scholar
  50. 50.
    A. Yousef, S. Shrestha, L.A. Viehland, E.P.F. Lee, B.R. Gray, V.L. Ayles, T.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 154309 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    X.F. Tong, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, J. Chem. Phys. 134, 024306 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    X.Y. Li, X.Y. Cheng, X. Cao, Struct. Chem. 23, 1831 (2012) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckInnsbruckAustria
  2. 2.Physics Department, University of New HampshireDurhamUSA

Personalised recommendations