Advertisement

Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration

  • Daniel Depes
  • Jin-Ho Lee
  • Elizaveta Bobkova
  • Lucie Jezkova
  • Iva Falkova
  • Felix Bestvater
  • Eva Pagacova
  • Olga Kopecna
  • Mariia Zadneprianetc
  • Alena Bacikova
  • Elena Kulikova
  • Elena Smirnova
  • Tatiana Bulanova
  • Alla Boreyko
  • Evgeny Krasavin
  • Michael Hausmann
  • Martin Falk
Regular Article
  • 42 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Quantification and structural studies of DNA double strand breaks (DSBs) are an essential part of radiobiology because DSBs represent the most serious damage introduced to the DNA molecule by ionizing radiation. Although standard immunofluorescence confocal microscopy has demonstrated its usefulness in a large number of research studies, it lacks the resolution required to separate individual, closely associated DSBs, which appear after cell exposure to high linear energy transfer (high-LET) radiation and can be visualized as clusters or streaks of radiation-induced repair foci (IRIFs). This prevents our deeper understanding of DSB induction and repair. Recent breakthroughs in super-resolution light microscopy, such as the development of single-molecule localization microscopy (SMLM), offer an optical resolution of approximately an order of magnitude better than that of standard confocal microscopy and open new horizons in radiobiological research. Unlike electron microscopy, SMLM (also referred to as “nanoscopy”) preserves the natural structure of biological samples and is not limited to very thin sample slices. Importantly, SMLM not only offers a resolution on the order of approximately 10 nm, but it also provides entirely new information on the biochemistry and spatio-temporal organization of DSBs and DSB repair at the molecular level. Nevertheless, it is still challenging to correctly interpret these often surprising nanoscopy results. In the present article, we describe our first attempts to use SMLM to explore γH2AX and 53BP1 repair foci induced with 15N high-LET particles.

Graphical abstract

References

  1. 1.
    F.V. Rassool, Cancer Lett. 193, 1 (2003) CrossRefGoogle Scholar
  2. 2.
    E. Sage, N. Shikazono, Free Radic. Biol. Med. 107, 125 (2017) Google Scholar
  3. 3.
    M. Falk, E. Lukasova, S. Kozubek, Biochim. Biophys. Acta 1783, 2398 (2008) CrossRefGoogle Scholar
  4. 4.
    M. Falk, E. Lukasova, L. Stefancikova, E. Baranova, I. Falkova, L. Jezkova, M. Davidkova, A. Bacikova, J. Vachelova, A. Michaelidesova, S. Kozubek, Appl. Radiat. Isot. 83, 177 (2014) CrossRefGoogle Scholar
  5. 5.
    M. Falk, E. Lukasova, S. Kozubek, Mutat. Res. 704, 88 (2010) CrossRefGoogle Scholar
  6. 6.
    M. Falk, M. Hausmann, E. Lukasova, A. Biswas, G. Hildenbrand, M. Davidkova, E. Krasavin, Z. Kleibl, I. Falkova, L. Jezkova, L. Stefancikova, J. Sevcik, M. Hofer, A. Bacikova, P. Matula, A. Boreyko, J. Vachelova, A. Michaelidisova, S. Kozubek, Crit. Rev. Eukaryot. Gene Expr. 24, 225 (2014) CrossRefGoogle Scholar
  7. 7.
    Z. Nikitaki, V. Nikolov, I.V. Mavragani, E. Mladenov, A. Mangelis, D.A. Laskaratou, G.I. Fragkoulis, C.E. Hellweg, O.A. Martin, D. Emfietzoglou, V.I. Hatzi, G.I. Terzoudi, G. Iliakis, A.G. Georgakilas, Free Radic. Res. 50, S64 (2016) CrossRefGoogle Scholar
  8. 8.
    M. Hada, A.G. Georgakilas, J. Radiat. Res. 49, 203 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    E. Surdutovich, G. Garcia, N. Mason, A.V. Solov’yov, Eur. Phys. J. D 70, 86 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Smialek, P. Limao-Vieira, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 68, 312 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    A. Takahashi, T. Ohnishi, Cancer Lett. 229, 171 (2005) CrossRefGoogle Scholar
  12. 12.
    M.M. Vilenchik, A.G. Knudson, Proc. Natl. Acad. Sci. U.S.A 100, 12871 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    M. Moreno-Villanueva, M. Wong, T. Lu, Y. Zhang, H.L. Wu, Npj Microgravity 3, 14 (2017) CrossRefGoogle Scholar
  14. 14.
    A.V. Solov’yov (Ed.), Nanoscale Insights into Ion-Beam Cancer Therapy (Springer Berlin Heidelberg, New York, NY, 2016) Google Scholar
  15. 15.
  16. 16.
    A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    L. Jezkova, M. Zadneprianetc, E. Kulikova, E. Smirnova, T. Bulanova, D. Depes, I. Falkova, A. Boreyko, E. Krasavin, M. Davidkova, S. Kozubek, O. Valentova, M. Falk, Nanoscale 10, 1162 (2018) CrossRefGoogle Scholar
  19. 19.
    E. Weterings, D.J. Chen, Cell Res. 18, 114 (2008) CrossRefGoogle Scholar
  20. 20.
    P.A. Jeggo, M. Lobrich, Biochem. J. 471, 1 (2015) CrossRefGoogle Scholar
  21. 21.
    M. Majidinia, B. Yousefi, DNA Repair 54, 22 (2017) CrossRefGoogle Scholar
  22. 22.
    J. Sakata, A. Hirosue, R. Yoshida, Y. Matsuoka, K. Kawahara, T. Yamamoto, H. Arita, H. Nakashima, S. Gohara, S. Kawaguchi, Y. Nagao, K. Yamana, H. Nakayama, Cancer Sci. 109, 324 (2018) Google Scholar
  23. 23.
    8th International Symposium “Atomic Cluster Collisions” - ISACC(2017) https://doi.org/www.isacc-cuba.org
  24. 24.
    M. Falk, E. Lukasova, B. Gabrielova, V. Ondrej, S. Kozubek, Biochim. Biophys. Acta 1773, 1534 (2007) CrossRefGoogle Scholar
  25. 25.
    M. Falk, E. Lukasova, B. Gabrielova, V. Ondrej, S. Kozubek, J. Phys. Conf. Ser. 101, 012018 (2008) CrossRefGoogle Scholar
  26. 26.
    L. Jezkova, M. Falk, I. Falkova, M. Davidkova, A. Bacikova, L. Stefancikova, J. Vachelova, A. Michaelidesova, E. Lukasova, A. Boreyko, E. Krasavin, S. Kozubek, Appl. Radiat. Isot. 83, 128 (2014) CrossRefGoogle Scholar
  27. 27.
    M. Hofer, M. Falk, D. Komurkova, I. Falkova, A. Bacikova, B. Klejdus, E. Pagacova, L. Stefancikova, L. Weiterova, K.J. Angelis, S. Kozubek, L. Dusek, S. Galbavy, J. Med. Chem. 59, 3003 (2016) CrossRefGoogle Scholar
  28. 28.
    C. Cremer, R. Kaufmann, M. Gunkel, S. Pres, Y. Weiland, P. Muller, T. Ruckelshausen, P. Lemmer, F. Geiger, S. Degenhard, C. Wege, N. A. W. Lemmermann, R. Holtappels, H. Strickfaden, M. Hausmann, Biotechnol. J. 6, 1037 (2011) CrossRefGoogle Scholar
  29. 29.
    M. Hausmann, E. Wagner, J.H. Lee, G. Schrock, W. Schaufler, M. Krufczik, F. Papenfuss, M. Port, F. Bestvater, H. Scherthan, Nanoscale 10, 4320 (2018) CrossRefGoogle Scholar
  30. 30.
    M. Eryilmaz, E. Schmitt, M. Krufczik, F. Theda, J.H. Lee, C. Cremer, F. Bestvater, W. Schaufler, M. Hausmann, G. Hildenbrand, Cancers (Basel) 10, 25 (2018) CrossRefGoogle Scholar
  31. 31.
    M. Hausmann, N. Ilic, G. Pilarczyk, J.H. Lee, A. Logeswaran, A.P. Borroni, M. Krufczik, F. Theda, N. Waltrich, F. Bestvater, G. Hildenbrand, C. Cremer, M. Blank, Int. J. Mol. Sci. 18, 2066 (2017) CrossRefGoogle Scholar
  32. 32.
    J.P. Eberle, A. Rapp, M. Krufczik, M. Eryilmaz, M. Gunkel, H. Erfle, M. Hausmann, Methods Mol. Biol. 1663, 1 (2017) Google Scholar
  33. 33.
    M. Bach, C. Savini, M. Krufczik, C. Cremer, F. Rosl, M. Hausmann, Int. J. Mol. Sci. 18, 1726 (2017) Google Scholar
  34. 34.
    M. Krufczik, A. Sievers, A. Hausmann, J.H. Lee, G. Hildenbrand, W. Schaufler, M. Hausmann, Int. J. Mol. Sci. 18, 1005 (2017) CrossRefGoogle Scholar
  35. 35.
    A. Kinner, W.Q. Wu, C. Staudt, G. Iliakis, Nucleic Acids Res. 36, 5678 (2008) CrossRefGoogle Scholar
  36. 36.
    E.P. Rogakou, D.R. Pilch, A.H. Orr, V.S. Ivanova, W.M. Bonner, J. Biol. Chem. 273, 5858 (1998) CrossRefGoogle Scholar
  37. 37.
    J. Seo, S.C. Kim, H.S. Lee, J.K. Kim, H.J. Shon, N.L.M. Salleh, K.V. Desai, J.H. Lee, E.S. Kang, J.S. Kim, J.K. Choi, Nucleic Acids Res. 40, 5965 (2012) CrossRefGoogle Scholar
  38. 38.
    E.L. Leatherbarrow, J.V. Harper, F.A. Cucinotta, P. O’Neill, Int. J. Radiat. Biol. 82, 111 (2006) CrossRefGoogle Scholar
  39. 39.
    K. Rothkamm, M. Lobrich, Proc. Natl. Acad. Sci. U.S.A. 100, 5057 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    G. Alsbeih, W.A. Brock, N. Terry, M.D. Story, Radiat. Environ. Biophys. 42, 107 (2003) CrossRefGoogle Scholar
  41. 41.
    J. Yuan, J. Chen, J. Biol. Chem. 285, 1097 (2010) CrossRefGoogle Scholar
  42. 42.
    N.F. Cheville, J. Stasko, Vet. Pathol. 51, 28 (2014) CrossRefGoogle Scholar
  43. 43.
    C. Cremer, A. Szczurek, F. Schock, A. Gourram, U. Birk, Methods 123, 11 (2017) CrossRefGoogle Scholar
  44. 44.
    A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, J. Microsc. 199, 96 (2000) CrossRefGoogle Scholar
  45. 45.
    F. Moser, G. Hildenbrand, P. Müller, A. AI Saroori, A. Biswas, M. Bach, F. Wenz, C. Cremer, N. Burger, N. Veldwijk, M.R. Veldwijk, M. Hausmann, Biophys. J. 110, 947 (2016) ADSCrossRefGoogle Scholar
  46. 46.
    J. Reindl, S. Girst, D.W.M. Walsh, C. Greubel, B. Schwarz, C. Siebenwirth, G.A. Drexler, A.A. Friedl, G. Dollinger, Sci. Rep. 7, 40616 (2017) ADSCrossRefGoogle Scholar
  47. 47.
    S. Barnard, S. Bouffler, K. Rothkamm, Genome Integr. 4, 1 (2013) CrossRefGoogle Scholar
  48. 48.
    Y. Lorat, C.U. Brunner, S. Schanz, B. Jakob, G. Taucher-Scholz, C.E. Rube, DNA Repair (Amst) 28, 93 (2015) CrossRefGoogle Scholar
  49. 49.
    F. Natale et al., Nat. Commun. 8, 15760 (2017) ADSCrossRefGoogle Scholar
  50. 50.
    Y. Lorat, S. Timm, B. Jakob, G. Taucher-Scholz, C.E. Rube, Radiother. Oncol. 121, 154 (2016) CrossRefGoogle Scholar
  51. 51.
    E. Riballo et al., Mol. Cell 16, 715 (2004) CrossRefGoogle Scholar
  52. 52.
    E.L. Leatherbarrow, J.V. Harper, F.A. Cucinotta, P. O’Neill, Int. J. Radiat. Biol. 82, 111 (2006) CrossRefGoogle Scholar
  53. 53.
    M. Falk, M. Hausmann, A. Biswas, G. Hildenbrand, M. Davidkova, E. Krasavin, Z. Kleibl, I. Falkova , L. Jezkova, L. Stefancikova, J. Sevcik, M. Hofer, A. Bacikova, P. Matula, A. Boreyko, J. Vachelova, A. Michaelidesova, S. Kozubek, Crit. Rev. Eukaryot. Gene Expr. 24, 205 (2014) CrossRefGoogle Scholar
  54. 54.
    A.A. Bezbakh, V.B. Zager, G. Kaminski, A.I. Krylov, Y.G. Teterev, G.N. Timoshenko, Phys. Part. Nucl. Lett. 10, 175 (2013) CrossRefGoogle Scholar
  55. 55.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Meth. B 376, 185 (2016) ADSCrossRefGoogle Scholar
  56. 56.
    P. Matula, M. Maska, O. Danek, P. Matula, M. Kozubek, in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2009), Vols. 1 and 2, p. 1138 Google Scholar
  57. 57.
    F. Grull, M. Kirchgessner, R. Kaufmann, M. Hausmann, U. Kebschull, in 21st International Conference on Field Programmable Logic and Applications (2011), p. 1 Google Scholar
  58. 58.
    M. Stuhlmuller, J. Schwarz-Finsterle, E. Fey, J. Lux, M. Bach, C. Cremer, K. Hinderhofer, M. Hausmann, G. Hildenbrand, Nanoscale 7, 17938 (2015) ADSCrossRefGoogle Scholar
  59. 59.
    P.S. Boyd, N. Struve, M. Bach, J.P. Eberle, M. Gote, F. Schock, C. Cremer, M. Kriegs, M. Hausmann, Nanoscale 8, 20037 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Depes
    • 1
    • 2
  • Jin-Ho Lee
    • 3
  • Elizaveta Bobkova
    • 3
  • Lucie Jezkova
    • 4
  • Iva Falkova
    • 1
  • Felix Bestvater
    • 5
  • Eva Pagacova
    • 1
  • Olga Kopecna
    • 1
  • Mariia Zadneprianetc
    • 4
  • Alena Bacikova
    • 1
  • Elena Kulikova
    • 4
  • Elena Smirnova
    • 4
  • Tatiana Bulanova
    • 4
  • Alla Boreyko
    • 4
  • Evgeny Krasavin
    • 4
  • Michael Hausmann
    • 3
  • Martin Falk
    • 1
  1. 1.Czech Academy of Sciences, Institute of BiophysicsBrnoCzech Republic
  2. 2.Masaryk University, Faculty of SciencesBrnoCzech Republic
  3. 3.Kirchhoff-Institute for Physics, University of HeidelbergHeidelbergGermany
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia
  5. 5.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations