Advertisement

Even numbered carbon clusters: cost-effective wavefunction-based method for calculation and automated location of most structural isomers

  • António J. C. Varandas
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Using second-order Möller-Plesset perturbation-theoretic calculations with extrapolation of the energy from the lowest steps of the hierarchical staircase to the complete basis set limit, a wave function-based approach emerges that rivals density functional theory in accuracy and cost-effectiveness. Tested on a large set of reactions, the method is now applied to the carbon clusters. Combined with variable-scaling opposite spin theory, the results approximate couple-cluster quality at no additional cost. Jointly with a stimulated breakup of the molecule by choosing a (simple or composite) driving coordinate at an adequate level of theory, the approach still offers a near automated tool for locating structural isomers along the optimized reaction coordinate for stimulated evolution so obtained. Adaptations are also suggested.

Graphical abstract

References

  1. 1.
    S. Arulmozhiraja, T. Ohno, J. Chem. Phys. 128, 114301 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    L. Belau, S.E. Wheeler, B.W. Ticknor, M. Ahmed, S.R. Leone, W.D. Allen, H.F. Schaefer III, M.A. Duncan, J. Am. Chem. Soc. 129, 10229 (2007) CrossRefGoogle Scholar
  3. 3.
    K.E. Yousaf, P.R. Taylor, Chem. Phys. 349, 58 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    N. Sakai, S. Yamamoto, Chem. Rev. 113, 8981 (2013) CrossRefGoogle Scholar
  5. 5.
    N.L.J. Cox, F. Patat, ApJ 565, A61 (2014) Google Scholar
  6. 6.
    T.W. Yen, S.K. Lai, J. Chem. Phys. 142, 084313 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    S.K. Lai, I. Setiyawati, T.W. Yen, Y.H. Tang, Theor. Chem. Acc. 136, 20 (2016) CrossRefGoogle Scholar
  8. 8.
    C.M.R. Rocha, A.J.C. Varandas, J. Chem. Phys. 144, 064309 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    A.J.C. Varandas, C.M.M. Rocha, Philos. Trans. Roy. Soc. A 376, 20170145 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    S. Shaik, D. Danovich, W. Wu, P. Su, H.S. Rzepa, P.C. Hiberty, Nat. Chem. 4, 195 (2012) CrossRefGoogle Scholar
  11. 11.
    W. Kohn, L. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  12. 12.
    R. Peverati, D.G. Truhlar, Phil. Trans. R. Soc. A 372, 20120476 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    N. Mardirossian, M. Head-Gordon, J. Chem. Theory Comput. 12, 4303 (2016) CrossRefGoogle Scholar
  14. 14.
    A.J.C. Varandas, M.M. González, L.A. Montero-Cabrera, J.M.G. de la Vega, Chem. Eur. J. 23, 9122 (2017) CrossRefGoogle Scholar
  15. 15.
    A.J.C. Varandas F.N.N. Pansini, J. Chem. Phys. 141, 224113 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    F.N.N. Pansini, A.C. Neto, A.J.C. Varandas, Theor. Chem. Acc. 135, 261 (2016) CrossRefGoogle Scholar
  17. 17.
    A.J.C. Varandas, Ann. Rev. Phys. Chem. 69, 7.1 (2018) CrossRefGoogle Scholar
  18. 18.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006) CrossRefGoogle Scholar
  19. 19.
    A. Ngandjong, J. Mezei, J. Mougenot, A. Michau, K. Hassouni, G. Lombardi, M. Seydou, F. Maurel, Comp. Theor. Chem. 1102, 105 (2017) CrossRefGoogle Scholar
  20. 20.
    S. Grimme, J. Chem. Phys. 118, 9095 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    A.J.C. Varandas, J. Chem. Phys. 133, 064104 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    J.N. Murrell, K.J. Laidler, J. Chem. Soc. Faraday Trans. 64, 371 (1968) CrossRefGoogle Scholar
  23. 23.
    S. Glasstone, K. Laidler, H. Eyring, The Theory of Rate Processes, (McGraw-Hill New York, 1941) Google Scholar
  24. 24.
    S. Maeda, K. Morokuma, J. Chem. Theory Comput. 7, 2335 (2011) CrossRefGoogle Scholar
  25. 25.
    K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys. 66, 2153 (1977) ADSCrossRefGoogle Scholar
  26. 26.
    M.J.S. Dewar, S. Kirschner, J. Am. Chem. Soc. 93, 4290 (1971) CrossRefGoogle Scholar
  27. 27.
    A.J.C. Varandas, J. Phys. Chem. A 114, 8505 (2010) CrossRefGoogle Scholar
  28. 28.
    A.J.C. Varandas, Phys. Chem. Chem. Phys. 16, 16997 (2014) CrossRefGoogle Scholar
  29. 29.
    K. Bondensgard, F. Jensen, J. Chem. Phys. 104, 8025 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comp. Chem. 19, 1087 (1998) CrossRefGoogle Scholar
  31. 31.
    K. Irikura, R. Johnson, J. Phys. Chem. A 104, 2191 (2000) CrossRefGoogle Scholar
  32. 32.
    E. Muller, A. de Meijere, H. Grubmuller, J. Chem. Phys. 116, 897 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Angew. Chem. Int. Ed. 50, 644 (2011) CrossRefGoogle Scholar
  34. 34.
    D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997) CrossRefGoogle Scholar
  35. 35.
    S. Habershon, J. Chem. Theor. Comput. 12, 1786 (2016) CrossRefGoogle Scholar
  36. 36.
    L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V.S. Pande, T.J. Martínez, Nat. Chem. 6, 1044 (2014) CrossRefGoogle Scholar
  37. 37.
    E. Martínez-Núñez, Phys. Chem. Chem. Phys. 17, 14912 (2015) CrossRefGoogle Scholar
  38. 38.
    E. Martínez-Núñez, J. Comput. Chem. 36, 222 (2015) CrossRefGoogle Scholar
  39. 39.
    J.A. Varela, S.A. Vázquez, E. Martínez-Núñez, Chem. Sci. 8, 3843 (2017) CrossRefGoogle Scholar
  40. 40.
    T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, Chichester, 2000) Google Scholar
  41. 41.
    W. Klopper, Mol. Phys. 6, 481 (2001) ADSCrossRefGoogle Scholar
  42. 42.
    D.W. Schwenke, J. Chem. Phys. 122, 014107 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007) ADSCrossRefGoogle Scholar
  44. 44.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989) ADSCrossRefGoogle Scholar
  45. 45.
    T.H. Dunning Jr., K.A. Peterson, D.E. Woon, in Encyclopedia of Computational Chemistry, edited by P.V.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kolman, H.F. Schaefer III (Wiley, Chichester, 1998), p. 88 Google Scholar
  46. 46.
    E.A. Rohlfing, D.M. Cox, A. Kaldor, J. Chem. Phys. 81, 3322 (1984) ADSCrossRefGoogle Scholar
  47. 47.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) ADSCrossRefGoogle Scholar
  48. 48.
    M.Y. Hahn, E.C. Honea, A.J. Paguia, K.E. Schriver, A.M. Camarena, R.L. Whetten, Chem. Phys. Lett. 130, 12 (1986) ADSCrossRefGoogle Scholar
  49. 49.
    E.A. Rohlfing, J. Chem. Phys. 93, 7851 (1990) ADSCrossRefGoogle Scholar
  50. 50.
    T. Moriwaki, K. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, Y. Achiba, J. Chem. Phys. 107, 8927 (1997) ADSCrossRefGoogle Scholar
  51. 51.
    Y.K. Choi, H.S. Im, K.K.W. Jung, Int. J. Mass Spectrom. 189, 115 (1999) CrossRefGoogle Scholar
  52. 52.
    M.E. Geusic, M.F. Jarrold, T.J. McIlrath, R.R. Freeman, W.L. Brown, J. Chem. Phys. 86, 3862 (1987) ADSCrossRefGoogle Scholar
  53. 53.
    C.H. Bae, S.M. Park, J. Chem. Phys. 117, 5347 (2002) ADSCrossRefGoogle Scholar
  54. 54.
    J.D. Watts, R.J. Bartlett, Chem. Phys. Lett. 190, 19 (1992) ADSCrossRefGoogle Scholar
  55. 55.
    J. Hutter, H.P. Lüthi, J. Chem. Phys. 101, 2213 (1994) ADSCrossRefGoogle Scholar
  56. 56.
    J.M.L. Martin, P.R. Taylor, J. Phys. Chem. 100, 6047 (1996) CrossRefGoogle Scholar
  57. 57.
    R.O. Jones, J. Chem. Phys. 110, 5189 (1999) ADSCrossRefGoogle Scholar
  58. 58.
    Y. Shlyakhter, S. Sokolova, A. Lüchow, J.B. Anderson, J. Chem. Phys. 110, 10725 (1999) ADSCrossRefGoogle Scholar
  59. 59.
    A. Karton, A. Tarnopolsky, J.M. Martin, Mol. Phys. 107, 977 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    N.A. Poklonski, S.V. Ratkevich, S.A. Vyrko, J. Phys. Chem. A 119, 9133 (2015) CrossRefGoogle Scholar
  61. 61.
    C. Mauney, M.B. Nardelli, D. Lazzati, ApJ 800, 30 (2015) ADSCrossRefGoogle Scholar
  62. 62.
    T.H. Dunning, K.A. Peterson, A.K. Wilson, J. Chem. Phys. 114, 9244 (2001) ADSCrossRefGoogle Scholar
  63. 63.
    A.J.C. Varandas, J. Chem. Chem. A 117, 7393 (2013) Google Scholar
  64. 64.
    W. Weltner Jr., R.J.V. Zee, Chem. Rev. 89, 1713 (1989) CrossRefGoogle Scholar
  65. 65.
    A.V. Orden, R.J. Saykally, Chem. Rev. 98, 2313 (1998) CrossRefGoogle Scholar
  66. 66.
    G. Monninger, M. Forderer, P. Gurtler, S. Kalhofer, S. Petersen, L. Nemes, P.G. Szalay, W. Kratschmer, J. Phys. Chem. A 106, 5779 (2002) CrossRefGoogle Scholar
  67. 67.
    J.D. Presilla-Marquez, J. Harper, J.A. Sheehy, P.G. Carrick, C.W. Larson, Chem. Phys. Lett. 300, 719 (1999) ADSCrossRefGoogle Scholar
  68. 68.
    L. Lapinski, M. Vala, Chem. Phys. Lett. 300, 195 (1999) ADSCrossRefGoogle Scholar
  69. 69.
    A.E. Boguslavskiy, J.P. Maier, Phys. Chem. Chem. Phys. 9, 127 (2007) CrossRefGoogle Scholar
  70. 70.
    N.G. Gotts, G. von Helden, M.T. Bowers, Int. J. Mass Spectrometry Ion Process. 149/150, 217 (1995) ADSCrossRefGoogle Scholar
  71. 71.
    D. Sharapa, A. Hirsch, B. Meyer, T. Clark, Chem. Phys. Chem. 16, 2165 (2015) CrossRefGoogle Scholar
  72. 72.
    V. Parasuk, J. Almlöf, Theor. Chim. Acta. 83, 227 (1992) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Physical Engineering, Qufu Normal UniversityQufuP.R. China
  2. 2.Chemistry Centre and Department of Chemistry, University of CoimbraCoimbraPortugal

Personalised recommendations