Advertisement

Concentration distributions and reaction pathways of species in the mass transfer process from atmospheric pressure plasma jet to water

  • Jun Du
  • Zhaoqian Liu
  • Chengjie Bai
  • Li Li
  • Yuefeng Zhao
  • Lijuan Wang
  • Jie Pan
Regular Article

Abstract

Plasma–liquid interactions are becoming an increasingly significant topic in the field of low-temperature plasma science and technology. This work builds up a drift-diffusion model to numerically investigate concentration distributions and reaction pathways of various species in the mass transfer process from atmospheric pressure plasma jet (APPJ) to water. The simulation results indicate that H2O2 is a persistent molecular compound in the liquid phase region. Except for H2O2, the species concentrations of O3 and OH are relatively higher in the shallow region of water. The species O3, OH, and HO2 have approximately the same penetration depth in the liquid region. H2O2 is primarily generated by O(1D) + H2O → H2O2 due to the continuous mass transfer of O(1D) from APPJ to water. Furthermore, 2OH → H2O2 also produces a great deal of H2O2 in the liquid phase region.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    I. Adamovich et al., J. Phys. D 50, 323001 (2017) CrossRefGoogle Scholar
  2. 2.
    Y. He, S. Uehara, H. Takana, H. Nishiyama, Eur. Phys. J. D 72, 11 (2018) ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Bruggeman et al., Plasma Sources Sci. Technol. 25, 053002 (2016) Google Scholar
  4. 4.
    M.D. Ionita, S. Vizireanu, S.D. Stoica, M. Ionita, A.M. Pandele, A. Cucu, I. Stamatin, L.C. Nistor, G. Dinescu, Eur. Phys. J. D 70, 31 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    J. Pan, L. Li, B. Chen, Y. Song, Y. Zhao, X. Xiu, Eur. Phys. J. D 70, 136 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    D. Mariotti, J. Patel, V. Švrček, P. Maguire, Plasma Proc. Polym. 9, 1074 (2012) Google Scholar
  7. 7.
    J.E. Foster, Phys. Plasmas 24, 055501 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    Q. Chen, J. Li, Y. Li, J. Phys. D 48, 424005 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    N.N. Misra, S.K. Pankaj, A. Segat, K. Ishikawa, Trends Food Sci. Tech. 55, 39 (2016) Google Scholar
  10. 10.
    K.-D. Weltmann, T. von Woedtke, Plasma Phys. Control. Fusion 59, 014031 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Du, J. Wang, L. Zhang, H.X. Li, H. Liu, Y. Xiong, New J. Phys. 14, 013010 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    T. Shimizu, Y. Ikehara, J. Phys. D 50, 503001 (2017) CrossRefGoogle Scholar
  13. 13.
    Y. Takahashi, Y. Taki, K. Takeda, H. Hashizume, H. Tanaka, K. Ishikawa, M. Hori, J. Phys. D 51, 115401 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    M. Laroussi, X. Lu, M. Keidar, J. Appl. Phys. 122, 020901 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    N. Škoro, N. Puač, S. Živković, D. Krstić-Milošević, U. Cvelbar, G. Malović, Z.L. Petrović, Eur. Phys. J. D 72, 2 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    E. Abdel-Fattah, A. Yehia, M. Bazavan, T. Ishijima, Eur. Phys. J. D 71, 178 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Zhao, C. Wang, L. Li, L. Wang, J. Pan, Phys. Plasmas 25, 033504 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    E.R. Adhikari, S. Ptasinska, Eur. Phys. J. D 70, 180 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Phys. Rep. 630, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S.A. Norberg, W. Tian, E. Johnsen, M.J. Kushner, J. Phys. D 47, 475203 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    W. Tian, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014) MathSciNetGoogle Scholar
  22. 22.
    Y. Gorbanev, C.C.W. Verlackt, S. Tinck, E. Tuenter, K. Foubert, P. Cos, A. Bogaerts, Phys. Chem. Chem. Phys. 20, 2797 (2018) CrossRefGoogle Scholar
  23. 23.
    Y. Gorbanev, D. O’Connell, V. Chechik, Chem. Eur. J. 22, 3496 (2016) CrossRefGoogle Scholar
  24. 24.
    G. Uchida, K. Takenaka, K. Takeda, K. Ishikawa, M. Hori, Y. Setsuhara, Jpn. J. Appl. Phys. 57, 0102B4 (2018) CrossRefGoogle Scholar
  25. 25.
    V.V. Kovačević, G.B. Sretenović, E. Slikboer, O. Guaitella, A. Sobota, M.M. Kuraica, J. Phys. D 51, 065202 (2018) ADSCrossRefGoogle Scholar
  26. 26.
    C.C.W. Verlackt, W. Van Boxem, A. Bogaerts, Phys. Chem. Chem. Phys. 20, 6845 (2018) CrossRefGoogle Scholar
  27. 27.
    W. Van Boxem, J. Van der Paal, Y. Gorbanev, S. Vanuytsel, E. Smits, S. Dewilde, A. Bogaerts, Sci. Rep. 7, 16478 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    C. Chen, D.X. Liu, Z.C. Liu, A.J. Yang, H.L. Chen, G. Shama, M.G. Kong, Plasma Chem. Plasma Proc. 34, 403 (2014) CrossRefGoogle Scholar
  29. 29.
    Z.C. Liu, D.X. Liu, C. Chen, D. Li, A.J. Yang, M.Z. Rong, H.L. Chen, M.G. Kong, J. Phys. D 48, 495201 (2015) CrossRefGoogle Scholar
  30. 30.
    J. Jiang, Z. Tan, C. Shan, J. Pan, G. Pan, Y. Liu, X. Chen, X. Wang, Phys. Plasmas 23, 103503 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    S. Vermeylen et al., Plasma Process. Polym. 13, 1195 (2016) Google Scholar
  32. 32.
    N. Bibinov, N. Knake, H. Bahre, P. Awakowicz, V. Schulz-von der Gathen, J. Phys. D: Appl. Phys. 44, 345204 (2011) MathSciNetGoogle Scholar
  33. 33.
    A. Privat-Maldonado, Y. Gorbanev, D. O’Connell, R. Vann, V. Chechik, M.W. van der Woude, IEEE Trans. Radiat. Plasma Med. Sci. 2, 121 (2018) CrossRefGoogle Scholar
  34. 34.
    B. Pastina, J.A. LaVerne, J. Phys. Chem. A 105, 9316 (2001) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal UniversityJinanP.R. China
  2. 2.State Grid Jinan Power Supply CompanyJinanP.R. China

Personalised recommendations