Advertisement

Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system

  • Daniel C. Cole
Regular Article
  • 8 Downloads

Abstract

Subharmonic resonance behaviors are investigated for the classical hydrogen atom, with classical radiation damping and circularly polarized light acting on the classical electron. This study is intended for both potential experimental applications as well as for deeper theoretical purposes. Long resonant states are predicted for realistic Rydberg atoms and highly excited hydrogen states. Several previously undiscovered physical effects are predicted. First, the semimajor axis remains relatively constant when in subharmonic resonance; second, the eccentricity steadily increases until a maximum, critical value is reached, at which point orbital decay sets in. If the initial orbit is circular, this critical eccentricity value is shown to always be the same for each subharmonic condition, regardless of the initial orbital radius. An analytic derivation for this result is presented. The illustrated dynamics are of interest for the classical theory of stochastic electrodynamics (SED) regarding whether SED can fundamentally describe more of quantum phenomena, particularly atomic excited state behavior and related emission and absorption spectra. Also of interest are how classical resonances can be imposed on a near continuum of quantum states. Finally, there may be future technological applications, such as “reading” and “writing” information into Rydberg atoms in the form of subharmonic resonances.

Graphical abstract

Keywords

Atomic Physics 

Supplementary material

References

  1. 1.
    D. Cole, Y. Zou, J. Sci. Comput. 39, 1 (2009) MathSciNetCrossRefGoogle Scholar
  2. 2.
    D.C. Cole, Y. Zou, J. Sci. Comput. 20, 43 (2004) MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.C. Cole, Y. Zou, J. Sci. Comput. 20, 379 (2004) MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.C. Cole, Y. Zou, J. Sci. Comput. 21, 145 (2004) MathSciNetCrossRefGoogle Scholar
  5. 5.
    D.C. Cole, Y. Zou, Phys. Rev. E 69, 016601 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    D.C. Cole, Y. Zou, Phys. Lett. A 317, 14 (2003) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M.W. Noel, W.M. Griffith, T.F. Gallagher, Phys. Rev. A 62, 063401 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    T.H. Boyer, Phys. Rev. D 11, 809 (1975) ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Cole, Reviewing and extending some recent work on stochastic electrodynamics, in Essays on the Formal Aspects of Electromagnetic Theory, edited by A. Lakhtakia (World Scientific, Singapore, 1993), pp. 501–532 Google Scholar
  10. 10.
    L. de la Peña, A.M. Cetto, The Quantum Dice – An Introduction to Stochastic Electrodynamics (Kluwer Acad. Publishers, Kluwer Dordrecht, 1996) Google Scholar
  11. 11.
    T.W. Marshall, Statistical electrodynamics, in Proceedings of the Cambridge Philosophical Society (1965), Vol. 61, pp. 537–546 Google Scholar
  12. 12.
    T.H. Boyer, Phys. Rev. 182, 1374 (1969) ADSCrossRefGoogle Scholar
  13. 13.
    D.C. Cole, Phys. Rev. A 42, 1847 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    T.H. Boyer, Phys. Rev. D 21, 2137 (1980) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    T.H. Boyer, Phys. Rev. D 29, 1089 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    D.C. Cole, Phys. Rev. D 31, 1972 (1985) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D.C. Cole, Phys. Rev. D 35, 562 (1987) ADSCrossRefGoogle Scholar
  18. 18.
    T.H. Boyer, Phys. Rev. A 11, 1650 (1975) ADSCrossRefGoogle Scholar
  19. 19.
    D.C. Cole, Phys. Rev. D 33, 2903 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Cole, Phys. Rev. A 42, 7006 (1990) ADSCrossRefGoogle Scholar
  21. 21.
    D.C. Cole, Phys. Rev. A 45, 8471 (1992) ADSCrossRefGoogle Scholar
  22. 22.
    T.W. Marshall, Proc. R. Soc. Lond., Ser. A 276, 475 (1963) ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Boyer, Phys. Rev. A 21, 66 (1980) ADSCrossRefGoogle Scholar
  24. 24.
    T.H. Boyer, Phys. Rev. D 11, 790 (1975) ADSCrossRefGoogle Scholar
  25. 25.
    T.M. Nieuwenhuizen, M.T.P. Liska, Physica Scripta 2015, 014006 (2015) CrossRefGoogle Scholar
  26. 26.
    T.M. Nieuwenhuizen, M.T.P. Liska, Found. Phys. 45, 1190 (2015) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    T.M. Nieuwenhuizen, Entropy 18, 135 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    T.H. Boyer, Found. Phys. 46, 880 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    P.M. Koch, K.A.H. van Leeuwen, Phys. Rep. 255, 289 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    H. Maeda, D.V.L. Norum, T.F. Gallagher, Science 307, 1757 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    C. Teitelboim, D. Villarroel, Ch.G. van Weert, Riv. del Nuovo Cimento 3, 1 (1980) CrossRefGoogle Scholar
  32. 32.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (John Wiley & Sons, USA, 1975) Google Scholar
  33. 33.
    G.N. Plass, Rev. Mod. Phys. 33, 37 (1961) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992) Google Scholar
  35. 35.
    H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, MA, 1981) Google Scholar
  36. 36.
    T.L. Chow, Classical Mechanics (John Wiley & Sons Inc., New York, 1995) Google Scholar
  37. 37.
    R.A. Becker, Introduction to Theoretical Mechanics (McGraw-Hill, New York, 1954) Google Scholar
  38. 38.
    J.S. Rigden, Hydrogen: The Essential Element (Harvard University Press, Cambridge, Massachusetts, 2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Boston UniversityBostonUSA

Personalised recommendations