Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system

Abstract

Subharmonic resonance behaviors are investigated for the classical hydrogen atom, with classical radiation damping and circularly polarized light acting on the classical electron. This study is intended for both potential experimental applications as well as for deeper theoretical purposes. Long resonant states are predicted for realistic Rydberg atoms and highly excited hydrogen states. Several previously undiscovered physical effects are predicted. First, the semimajor axis remains relatively constant when in subharmonic resonance; second, the eccentricity steadily increases until a maximum, critical value is reached, at which point orbital decay sets in. If the initial orbit is circular, this critical eccentricity value is shown to always be the same for each subharmonic condition, regardless of the initial orbital radius. An analytic derivation for this result is presented. The illustrated dynamics are of interest for the classical theory of stochastic electrodynamics (SED) regarding whether SED can fundamentally describe more of quantum phenomena, particularly atomic excited state behavior and related emission and absorption spectra. Also of interest are how classical resonances can be imposed on a near continuum of quantum states. Finally, there may be future technological applications, such as “reading” and “writing” information into Rydberg atoms in the form of subharmonic resonances.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Cole, Y. Zou, J. Sci. Comput. 39, 1 (2009)

  2. 2.

    D.C. Cole, Y. Zou, J. Sci. Comput. 20, 43 (2004)

  3. 3.

    D.C. Cole, Y. Zou, J. Sci. Comput. 20, 379 (2004)

  4. 4.

    D.C. Cole, Y. Zou, J. Sci. Comput. 21, 145 (2004)

  5. 5.

    D.C. Cole, Y. Zou, Phys. Rev. E 69, 016601 (2004)

  6. 6.

    D.C. Cole, Y. Zou, Phys. Lett. A 317, 14 (2003)

  7. 7.

    M.W. Noel, W.M. Griffith, T.F. Gallagher, Phys. Rev. A 62, 063401 (2000)

  8. 8.

    T.H. Boyer, Phys. Rev. D 11, 809 (1975)

  9. 9.

    D.C. Cole, Reviewing and extending some recent work on stochastic electrodynamics, inEssays on the Formal Aspects of Electromagnetic Theory, edited by A. Lakhtakia (World Scientific, Singapore, 1993), pp. 501–532

  10. 10.

    L. de la Peña, A.M. Cetto,The Quantum Dice – An Introduction to Stochastic Electrodynamics (Kluwer Acad. Publishers, Kluwer Dordrecht, 1996)

  11. 11.

    T.W. Marshall, Statistical electrodynamics, in Proceedings of the Cambridge Philosophical Society (1965), Vol. 61, pp. 537–546

  12. 12.

    T.H. Boyer, Phys. Rev. 182, 1374 (1969)

  13. 13.

    D.C. Cole, Phys. Rev. A 42, 1847 (1990)

  14. 14.

    T.H. Boyer, Phys. Rev. D 21, 2137 (1980)

  15. 15.

    T.H. Boyer, Phys. Rev. D 29, 1089 (1984)

  16. 16.

    D.C. Cole, Phys. Rev. D 31, 1972 (1985)

  17. 17.

    D.C. Cole, Phys. Rev. D 35, 562 (1987)

  18. 18.

    T.H. Boyer, Phys. Rev. A 11, 1650 (1975)

  19. 19.

    D.C. Cole, Phys. Rev. D 33, 2903 (1986)

  20. 20.

    D.C. Cole, Phys. Rev. A 42, 7006 (1990)

  21. 21.

    D.C. Cole, Phys. Rev. A 45, 8471 (1992)

  22. 22.

    T.W. Marshall, Proc. R. Soc. Lond., Ser. A 276, 475 (1963)

  23. 23.

    T.H. Boyer, Phys. Rev. A 21, 66 (1980)

  24. 24.

    T.H. Boyer, Phys. Rev. D 11, 790 (1975)

  25. 25.

    T.M. Nieuwenhuizen, M.T.P. Liska, Physica Scripta 2015, 014006 (2015)

  26. 26.

    T.M. Nieuwenhuizen, M.T.P. Liska, Found. Phys. 45, 1190 (2015)

  27. 27.

    T.M. Nieuwenhuizen, Entropy 18, 135 (2016)

  28. 28.

    T.H. Boyer, Found. Phys. 46, 880 (2016)

  29. 29.

    P.M. Koch, K.A.H. van Leeuwen, Phys. Rep. 255, 289 (1995)

  30. 30.

    H. Maeda, D.V.L. Norum, T.F. Gallagher, Science 307, 1757 (2005)

  31. 31.

    C. Teitelboim, D. Villarroel, Ch.G. van Weert, Riv. del Nuovo Cimento 3, 1 (1980)

  32. 32.

    J.D. Jackson,Classical Electrodynamics, 2nd edn. (John Wiley & Sons, USA, 1975)

  33. 33.

    G.N. Plass, Rev. Mod. Phys. 33, 37 (1961)

  34. 34.

    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)

  35. 35.

    H. Goldstein,Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, MA, 1981)

  36. 36.

    T.L. Chow,Classical Mechanics (John Wiley & Sons Inc., New York, 1995)

  37. 37.

    R.A. Becker,Introduction to Theoretical Mechanics (McGraw-Hill, New York, 1954)

  38. 38.

    J.S. Rigden,Hydrogen: The Essential Element (Harvard University Press, Cambridge, Massachusetts, 2002)

Download references

Author information

Correspondence to Daniel C. Cole.

Additional information

Supplementary material in the form of one PDF file available from the Journal web page at https://doi.org/10.1140/epjd/e2018-90137-4

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cole, D.C. Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system. Eur. Phys. J. D 72, 200 (2018). https://doi.org/10.1140/epjd/e2018-90137-4

Download citation

Keywords

  • Atomic Physics