Advertisement

A closer insight into classical models for the He atom with two-active electrons

Regular Article
  • 23 Downloads

Abstract

In this work, two classical models which have been proposed to describe He atoms in collision processes by charged particle impact are revisited and analyzed. These are the Heisenberg-core and the energy-bounded classical trajectory Monte Carlo methods. These models avoid the classical autoionization by introducing in the Hamiltonian momentum-dependent terms. The physical implication of different choices of the involved parameters are analyzed as well as their influence at the total cross section level.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    R. Abrines, I.C. Percival, Proc. Phys. Soc. Lond. 88, 873 (1966) ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977) ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Olson, K.H. Berkner, W.G. Graham, R.V. Pyle, A.S. Schlachter, J.W. Stearns, Phys. Rev. Lett. 41, 163 (1978) ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Olson, Phys. Rev. A 24, 1726 (1981) ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Phaneuf, Phys. Rev. A 28, 1310 (1983) ADSCrossRefGoogle Scholar
  6. 6.
    M.L. McKenzie, R.E. Olson, Phys. Rev. A 35, 2863 (1987) ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Cohen, Phys. Rev. A 36, 2024 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Wetmore, R.E. Olson, Phys. Rev. A 38, 5563 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    T. Geyer, J.M. Rost, J. Phys. B: At. Mol. Opt. Phys. 36, L107 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    T. Geyer, J. Phys. B: At. Mol. Opt. Phys. 37, 1215 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    C.L. Kirschbaum, L. Wilets, Phys. Rev. A 21, 834 (1980) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Zajfman, D. Maor, Phys. Rev. Lett. 56, 320 (1986) ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Cohen, Phys. Rev. A 54, 573 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    W.A. Beck, L. Wilets, Phys. Rev. A 55, 2821 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    S. Morita, N. Matsuda, N. Toshima, K. Hino, Phys. Rev. A 66, 042719 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Ho, R. Panfili, S.L. Haan, J.H. Eberly, Phys. Rev. Lett. 94, 093002 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Haan, L. Breen, A. Karim, J.H. Eberly, Phys. Rev. Lett. 97, 103008 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhou, C. Huang, Q. Liao, P. Lu, Phys. Rev. Lett. 109, 053004 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    J.S. Cohen, Phys. Rev. A 62, 022512 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Zhou, Q. Liao, P. Lu, Phys. Rev. A 80, 023412 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    S. Otranto, G. Gasaneo, C.R. Garibotti, Nucl. Instrum. Methods Phys. Res. B 217, 12 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    R.H. Dalitz, Philos. Mag. 44, 1068 (1953) CrossRefGoogle Scholar
  23. 23.
    M.B. Shah, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 18, 899 (1985) ADSCrossRefGoogle Scholar
  24. 24.
    M.B. Shah, P. McCallion, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 22, 3037 (1989) ADSCrossRefGoogle Scholar
  25. 25.
    I.D. Kaganovich, E. Startsev, R.C. Davidson, New J. Phys. 8, 278 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    W. Wu, C.L. Cocke, J.P. Giese, F. Melchert, M.L.A. Raphaelian, M. Stöckli, Phys. Rev. Lett. 75, 1054 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    D. Eichenauer, N. Grun, W. Scheid, J. Phys. B: At. Mol. Phys. 14, 3929 (1981) ADSCrossRefGoogle Scholar
  28. 28.
    D.J.W. Hardie, R.E. Olson, J. Phys. B: At. Mol. Phys. 16, 1983 (1983) ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Cohen, J. Phys. B: At. Mol. Phys. 18, 1759 (1985) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), CONICETBahía BlancaArgentina

Personalised recommendations