Structural insights into glutathione-protected gold Au10−12(SG)10−12 nanoclusters revealed by ion mobility mass spectrometry

  • Clothilde Comby-Zerbino
  • Franck Bertorelle
  • Fabien Chirot
  • Philippe Dugourd
  • Rodolphe Antoine
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions


Gold nanoclusters protected by ligands present well-defined compositions and tunable structures, which builds a solid basis for correlation between structures and properties. We report a combined ion mobility-mass spectrometry approach for the analysis of ultra-small gold nanoclusters protected by glutathione (SG) as ligand molecules, Au10−12(SG)10−12. Collision cross section (CCS) measurements are reported for different charge states for Au10(SG)10, Au11(SG)11 and Au12(SG)12 nanoclusters. Computational calculations, at the PM7 semi-empirical level of theory, are performed to optimize geometrical structures and use them to compute CCS. The comparison of the experimentally and theoretically determined CCS allows drawing conclusions on the structural changes, in particular partial unfolding of SG ligands, upon charging.

Graphical abstract

Supplementary material


  1. 1.
    I. Chakraborty, T. Pradeep, Chem. Rev. 117, 8208 (2017) CrossRefGoogle Scholar
  2. 2.
    R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 116, 10346 (2016) CrossRefGoogle Scholar
  3. 3.
    R. Antoine, V. Bonačić-Koutecký, Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials (Springer, Cham, 2018) Google Scholar
  4. 4.
    L.-Y. Chen, C.-W. Wang, Z. Yuan, H.-T. Chang, Anal. Chem. 87, 216 (2015) CrossRefGoogle Scholar
  5. 5.
    P. Khandelwal, P. Poddar, J. Mater. Chem. B 5, 9055 (2017) CrossRefGoogle Scholar
  6. 6.
    X. Qu, Y. Li, L. Li, Y. Wang, J. Liang, J. Liang, J. Nanomater. 2015, 23 (2015) Google Scholar
  7. 7.
    Y. Lu, W. Chen, Anal. Chem. 87, 10659 (2015) CrossRefGoogle Scholar
  8. 8.
    R. Hamouda, F. Bertorelle, D. Rayane, R. Antoine, M. Broyer, P. Dugourd, Int. J. Mass Spectrom. 335, 1 (2013) CrossRefGoogle Scholar
  9. 9.
    P.P. Radi, G. von Helden, M.T. Hsu, P.R. Kemper, M.T. Bowers, Int. J. Mass Spectrom. Ion Process. 109, 49 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    M.F. Jarrold, J.E. Bower, J. Chem. Phys. 98, 2399 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes, J. Chem. Phys. 117, 6982 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    K.M. Harkness, L.S. Fenn, D.E. Cliffel, J.A. McLean, Anal. Chem. 82, 3061 (2010) CrossRefGoogle Scholar
  14. 14.
    L.A. Angel, L.T. Majors, A.C. Dharmaratne, A. Dass, ACS Nano 4, 4691 (2010) CrossRefGoogle Scholar
  15. 15.
    M.R. Ligare, E.S. Baker, J. Laskin, G.E. Johnson, Chem. Commun. 53, 7389 (2017) CrossRefGoogle Scholar
  16. 16.
    A. Baksi, A. Ghosh, S.K. Mudedla, P. Chakraborty, S. Bhat, B. Mondal, K.R. Krishnadas, V. Subramanian, T. Pradeep, J. Phys. Chem. C 121, 13421 (2017) CrossRefGoogle Scholar
  17. 17.
    A. Baksi, S.R. Harvey, G. Natarajan, V.H. Wysocki, T. Pradeep, Chem. Commun. 52, 3805 (2016) CrossRefGoogle Scholar
  18. 18.
    A. Soleilhac, F. Bertorelle, C. Comby-Zerbino, F. Chirot, N. Calin, P. Dugourd, R. Antoine, J. Phys. Chem. C 121, 27733 (2017) CrossRefGoogle Scholar
  19. 19.
    S. Daly, C.M. Choi, A. Zavras, M. Krstic̀, F. Chirot, T.U. Connell, S.J. Williams, P.S. Donnelly, R. Antoine, A. Giuliani, V. Bonačic̀-Kouteckỳ, P. Dugourd, R.A.J. O’Hair, J. Phys. Chem. C 121, 10719 (2017) CrossRefGoogle Scholar
  20. 20.
    F. Bertorelle, I. Russier-Antoine, N. Calin, C. Comby-Zerbino, A. Bensalah-Ledoux, S. Guy, P. Dugourd, P.-F. Brevet, Ž. Sanader, M. Krstic̀, V. Bonačic̀-Kouteckỳ, R. Antoine, J. Phys. Chem. Lett. 8, 1979 2017 Google Scholar
  21. 21.
    A.-L. Simon, F. Chirot, C.M. Choi, C. Clavier, M. Barbaire, J. Maurelli, X. Dagany, L. MacAleese, P. Dugourd, Rev. Sci. Instrum. 86, 094101 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    H.E. Revercomb, E.A. Mason, Anal. Chem. 47, 970 (1975) CrossRefGoogle Scholar
  23. 23.
    M.F. Mesleh, J.M. Hunter, A.A. Shvartsburg, G.C. Schatz, M.F. Jarrold, J. Phys. Chem. 100, 16082 (1996) CrossRefGoogle Scholar
  24. 24.
    J.J.P. Stewart, J. Mol. Model. 19, 1 (2013) CrossRefGoogle Scholar
  25. 25.
    M. James, J.P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, (2016)
  26. 26.
    I. Russier-Antoine, F. Bertorelle, A. Kulesza, A. Soleilhac, A. Bensalah-Ledoux, S. Guy, P. Dugourd, P.-F. Brevet, R. Antoine, Prog. Nat. Sci.: Mater. Int. 26, 455 (2016) CrossRefGoogle Scholar
  27. 27.
    C. Larriba-Andaluz, C.J. Hogan Jr., J. Chem. Phys. 141, 194107 (2014) CrossRefGoogle Scholar
  28. 28.
    T. Wyttenbach, G. von Helden, J.J. Batka, D. Carlat, M.T. Bowers, J. Am. Soc. Mass Spectrom. 8, 275 (1997) CrossRefGoogle Scholar
  29. 29.
    G. Ben-Nissan, M. Sharon, Curr. Opin. Chem. Biol. 42, 25 (2018) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut lumière matière, UMR 5306 Université Claude Bernard Lyon 1-CNRS, Université de LyonVilleurbanne cedexFrance
  2. 2.Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280VilleurbanneFrance

Personalised recommendations