Advertisement

Formation of enhanced opposite one-handed chiral fields in heterodimer-film nanostructures

  • Li Hu
  • Hongxia Dai
  • Feng Xi
  • Tao Long
Regular Article

Abstract

Plasmonic chirality has attracted a lot of interests because it could result in dramatically increased chiroptical interactions and offer many potential applications in chiral molecules analysis, catalysis, and other nanotechnology. In particular, one-handed chiral field is required in many applications for the reason that molecules are generally distributed randomly in some region of structures. In this work, benefiting from the coupling effect and energy focusing effect, we propose a heterodimer-film nanostructure to achieve one-handed chiral fields under linearly polarized light illumination. The results indicate that there are just opposite one-handed chiral fields in different gaps of the heterodimer-film nanostructure. The volume averaged optical chirality in the gaps can reach 102 and the optical chirality of hot spots can reach 103, which has potential applications in chiral sensing and Raman optical activity.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    J.T. Collins et al., Adv. Opt. Mater. 5, 1700182 (2017) CrossRefGoogle Scholar
  2. 2.
    K.W. Smith, S. Link, W.-S. Chang, J. Photochem. Photobiol. C 32, 40 (2017) CrossRefGoogle Scholar
  3. 3.
    V.K. Valev, A.O. Govorov, J. Pendry, Adv. Opt. Mater. 5, 1700501 (2017) CrossRefGoogle Scholar
  4. 4.
    A. Kuzyk et al., Nature 483, 311 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    P. Yu et al., Light Sci. Appl. 5, e16096 (2016) CrossRefGoogle Scholar
  6. 6.
    A. Ben-Moshe et al., Chem. Soc. Rev. 42, 7028 (2013) CrossRefGoogle Scholar
  7. 7.
    J. Govan, Y.K. Gun’ko, Nanoscience 3, 1 (2016) CrossRefGoogle Scholar
  8. 8.
    J.M. Slocik, A.O. Govorov, R.R. Naik, Nano Lett. 11, 701 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Fan, A.O. Govorov, Nano Lett. 12, 3283 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    B. Auguieì et al., J. Phys. Chem. Lett. 2, 846 (2011) CrossRefGoogle Scholar
  11. 11.
    M. Hentschel et al., Nano Lett. 12, 2542 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Z. Fan, A.O. Govorov, Nano Lett. 10, 2580 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhang, A.O. Govorov, Phys. Rev. B 87, 075410 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    M. Kuwata-Gonokami et al., Phys. Rev. Lett. 95, 227401 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    T. Vallius et al., Appl. Phys. Lett. 83, 234 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    T. Li et al., Appl. Phys. Lett. 93, 021110 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    T. Narushima, H. Okamoto, Phys. Chem. Chem. Phys. 15, 13805 (2013) CrossRefGoogle Scholar
  18. 18.
    J. Kaschke, M. Wegener, Opt. Lett. 40, 3986 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    M. Esposito et al., ACS Photonics 2, 105 (2015) CrossRefGoogle Scholar
  20. 20.
    M. Schäferling et al., ACS Photonics 1, 530 (2014) CrossRefGoogle Scholar
  21. 21.
    E. Plum et al., Phys. Rev. Lett. 102, 113902 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    L. Hu et al., Nanoscale 8, 3720 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    C. Kramer et al., ACS Photonics 4, 396 (2017) CrossRefGoogle Scholar
  24. 24.
    L. Kang, Q. Ren, D.H. Werner, ACS Photonics 4, 1298 (2017) CrossRefGoogle Scholar
  25. 25.
    T.J. Davis, E. Hendry, Phys. Rev. B 87, 085405 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    A. Canaguier-Durand, C. Genet, Phys. Rev. A 90, 023842 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    M. Schäferling et al., Phys. Rev. X 2, 031010 (2012) Google Scholar
  28. 28.
    M. Schäferling et al., Opt. Express 24, 26326 (2012) CrossRefGoogle Scholar
  29. 29.
    M. Schäferling et al., ACS Photonics 3, 1076 (2016) CrossRefGoogle Scholar
  30. 30.
    X. Tian, Y. Fang, M. Sun, Sci. Rep. 5, 17534 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Fang, Y. Huang, Appl. Phys. Lett. 102, 153108 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    T. Liu et al., J. Phys. Chem. C 120, 7778 (2016) CrossRefGoogle Scholar
  33. 33.
    Y. Tang, A.E. Cohen, Phys. Rev. Lett. 104 (2010) Google Scholar
  34. 34.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Engineering Laboratory for Detection, Control and Integrated System, Chongqing Technology and Business UniversityChongqingP.R. China
  2. 2.School of Computer Science and Information Engineering, Chongqing Technology and Business UniversityChongqingP.R. China
  3. 3.State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chong and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical UniversityChongqingP.R. China

Personalised recommendations