Surrealistic Bohmian trajectories do not occur with macroscopic pointers

  • Geneviève Tastevin
  • Franck LaloëEmail author
Regular Article


We discuss whether position measurements in quantum mechanics can be contradictory with Bohmian trajectories, leading to what has been called “surrealistic trajectories” in the literature. Previous work has considered that a single Bohmian position can be ascribed to the pointer. Nevertheless, a correct treatment of a macroscopic pointer requires that many particle positions should be included in the dynamics of the system, and that statistical averages should be made over their random initial values. Using numerical as well as analytical calculations, we show that these surrealistic trajectories exist only if the pointer contains a small number of particles; they completely disappear with macroscopic pointers. With microscopic pointers, non-local effects of quantum entanglement can indeed take place and introduce unexpected trajectories, as in Bell experiments; moreover, the initial values of the Bohmian positions associated with the measurement apparatus may influence the trajectory of the test particle, and determine the result of measurement. Nevertheless, a detailed observation of the trajectories of the particles of the pointer reveals the nature of the trajectory of the test particle; nothing looks surrealistic if all trajectories are properly interpreted.

Graphical abstract


Atomic Physics 


  1. 1.
    L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium 8, 225 (1927) CrossRefzbMATHGoogle Scholar
  2. 2.
    L. de Broglie, Interpretation of quantum mechanics by the double solution theory, Ann. Fond. Louis Broglie 12, 1 (1987) MathSciNetGoogle Scholar
  3. 3.
    L. de Broglie, Tentative d’Interprétation causale et non-linéaire de la Mécanique Ondulatoire (Gauthier-Villars, Paris, 1956) Google Scholar
  4. 4.
    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 166 (1952) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 180 (1952) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P.R. Holland, The Quantum Theory of Motion, (Cambridge University Press, Cambridge, 1993) Google Scholar
  7. 7.
    X. Oriols, J. Mompart, Overview of Bohmian mechanics, in Applied Bohmian mechanics: from nanoscale systems to cosmology, (Editorial Pan Stanford Publishing Pte. Ltd., 2012), Chap. 1, pp. 15–147;[quant-ph]
  8. 8.
    J. Bricmont, Making Sense of Quantum Mechanics, (Springer, Berlin, 2016) Google Scholar
  9. 9.
    R.B. Griffiths, Bohmian mechanics and consistent histories, Phys. Lett. A 261, 227 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    B.G. Englert, M.O. Scully, G. Süssmann, H. Walther, Surrealistic Bohm trajectories, Z. Naturforschung, 47a, 1175 (1992) Google Scholar
  11. 11.
    D. Dürr, W. Fusseder, S. Goldstein, N. Zanghi, Comments on surrealistic Bohm trajectories, Z. Naturforschung, 48a, 1261 (1993) Google Scholar
  12. 12.
    C. Dewdney, L. Hardy, E.J. Squires, How late measurements of quantum trajectories can fool a detector, Phys. Lett. A 184, 61 (1993) CrossRefGoogle Scholar
  13. 13.
    Y. Aharonov, L. Vaidman, About position measurements which do not show the Bohmian particle position, in Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J.T. Cushing et al. (Kluwer, 1996), p. 141 Google Scholar
  14. 14.
    M.O. Scully, Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Phys. Scripta T 76, 41 (1998) CrossRefGoogle Scholar
  15. 15.
    Y. Aharonov, B.-G. Englert, M.O. Scully, Protective measurements and Bohm trajectories, Phys. Lett. A 263, 137 (1999) MathSciNetCrossRefGoogle Scholar
  16. 16.
    B.J. Hiley, Welcher Weg experiments from the Bohm perspective, Quantum theory: reconsiderations of foundations; Växjö conbference, AIP Conf. Proc. 810, 154 (2006) CrossRefGoogle Scholar
  17. 17.
    H.M. Wiseman, Grounding Bohmian mechanics in weak values and bayesianism, New J. Phys. 9, 165 (2007) CrossRefGoogle Scholar
  18. 18.
    D. Dürr, S. Goldstein, N. Zanghi, Comments on surrealistic Bohm trajectories, J. Stat. Phys. 134, 1023 (2009) MathSciNetCrossRefGoogle Scholar
  19. 19.
    W.P. Schleich, M. Freyberger, M.S. Zubairy, Reconstruction of Bohm trajectories and wave functions from interferometric measurements, Phys. Rev. A 87, 014102 (2013) CrossRefGoogle Scholar
  20. 20.
    N. Gisin, Why Bohmian mechanics?[quant-ph] (2015)
  21. 21.
    S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, A.M. Steinberg, Observing the average trajectories of single photons in a two slit interferometer, Science 332, 1170 (2011) CrossRefGoogle Scholar
  22. 22.
    B. Braveman, C. Simon, Proposal to observe the nonlocality of Bohmian trajectories with entangled photons, Phys. Rev. Lett. 110, 060406 (2013) CrossRefGoogle Scholar
  23. 23.
    D.H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K.J. Resch, H.W. Wiseman, A. Steinberg, Experimental nonlocal and surreal Bohmian trajectories, Sci. Adv. 2, e1501466 (2016) CrossRefGoogle Scholar
  24. 24.
    F. Laloë, Comprenons-nous Vraiment la Mécanique Quantique? 2nd edn. (EDP Sciences, 2018); see in particular Appendix I Google Scholar
  25. 25.
    G. Naaman-Marom, N. Erez, L. Vaidman, Position measurements in the de Broglie–Bohm interpretation of quantum mechanics, Ann. Phys. 327, 2522 (2012) CrossRefGoogle Scholar
  26. 26.
    Wolfram Research Inc., Mathematica, Version 11.1 (Champaign, IL, 2017) Google Scholar
  27. 27.
    Y. Xiao, Y. Kedem, J.-S. Xu, C.-F. Li, G.-C. Guo, Experimental nonlocal steering of Bohmian trajectories, Opt. Express 25, 14643 (2017) Google Scholar
  28. 28.
    J.S. Bell, de Broglie-Bohm, delayed-choice double-slit experiment, and density matrix, Int. J. Quantum Chem. 14, 155 (1980) Google Scholar
  29. 29.
    M. Toroš, S. Donaldi, A. Bassi, Bohmian mechanics, collapse models and the emergence of classicality, J. Phys. A 49, 355302 (2016) MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Correggi, G. Morchio, Quantum mechanics and stochastic mechanics for compatible observables at different times, Ann. Phys. 296, 371 (2002) CrossRefGoogle Scholar
  31. 31.
    A. Neumaier, Bohmian mechanics contradicts quantum mechanics, (2000)
  32. 32.
    X. Oriols, A. Benseny, Conditions for the classicality of the center of mass of manyparticle quantum states, New J. Phys. 19, 063031 (2017) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de FranceParisFrance

Personalised recommendations