Advertisement

Low-energy electron scattering from fullerenes and heavy complex atoms: negative ions formation

  • Alfred Z. Msezane
  • Zineb Felfli
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Regge poles are generalized bound states. Our robust Regge pole methodology that embeds the crucial electron correlation effects and the vital polarization interaction is used to investigate negative ions formation in low-energy electron elastic scattering from the fullerenes Cn (n = 24, 28, 44, 60, 70, 74, 82, 94, 100, and 140) and the selected heavy lanthanide (Gd and Dy) and actinide (Pa and U) atoms through the elastic total cross sections (TCSs) calculations. All the TCSs are found to be characterized by Ramsauer–Townsend minima, shape resonances, and dramatically sharp resonances manifesting stable ground and metastable anionic formation during the collisions. The ground states anionic binding energies (BEs) for the Cn (n = 24, 28, 44, 60, 70, and 82) match excellently the measured electron affinities (EAs). The thus benchmarked Regge pole methodology on the ground states anionic BEs for these fullerenes is then used to calculate the ground and the metastable elastic TCSs for the fullerenes, and the heavy atoms wherefrom their anionic BEs are extracted and compared with the measured EAs where they are available. Surprisingly, the C74 fullerene has the largest anionic ground state BE value among the investigated fullerenes in this paper and the ground state of the C140 anion has a large BE as well. Many of these fullerenes could be useful in nanocatalysis, sensor technology and organic solar cells through their ground and metastable anionic BEs. For the heavy atoms the extracted ground and metastable anionic BEs are compared with the measured and calculated EAs. These results particularly the ground states anionic BEs of the fullerenes and heavy atoms are expected to inspire and guide the long overdue experimental and theoretical explorations of electron attachment in low-energy electron scattering in these and related systems.

Graphical abstract

References

  1. 1.
    M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Nanosystems 5, 494 (2014) Google Scholar
  2. 2.
    J.P. Dognon, C. Clavaguera, P. Pyykko, J. Am. Chem. Soc. 131, 238 (2009) CrossRefGoogle Scholar
  3. 3.
    M.V. Ryzhkov, A. L. Ivanovskii, B. Delley, Comp. Theor. Chem. 985, 46 (2012) CrossRefGoogle Scholar
  4. 4.
    M.V. Ryzhkov, B. Delley, Comp. Theor. Chem. 1013, 70 (2013) CrossRefGoogle Scholar
  5. 5.
    M. Diener, C.A. Smith, D.K. Veirs, Chem. Mater. 9, 1773 (1997) CrossRefGoogle Scholar
  6. 6.
    P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodriguez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto, J. Am. Chem. Soc. 134, 9380 (2012) CrossRefGoogle Scholar
  7. 7.
    S. Vital, J. Marco-Martinez, S. Filippone, N. Martin, Chem. Commun. 53, 4842 (2017) CrossRefGoogle Scholar
  8. 8.
    O.V. Boltalina, I.N. Ioffe, I.D. Sorokin, L.N. Sidorov, J. Phys. Chem. 101, 9561 (1997) CrossRefGoogle Scholar
  9. 9.
    F.L. De La Puente, J.-F. Nierengarten, eds. Fullerenes: Principles and Applications (Nanoscience & Nanotechnology Series), 2nd edn. (Royal Society of Chemistry, 2011) Google Scholar
  10. 10.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, Boston, MA, 1996) Google Scholar
  11. 11.
    E.M. Speller, Mater. Sci. Technol. 33, 924 (2017) CrossRefGoogle Scholar
  12. 12.
    V.K. Voorat, L.S. Cederbaum, K.D. Jordan, J. Phys. Chem. Lett. 4, 848 (2013) Google Scholar
  13. 13.
    J.N. Bull, J.R.R. Verlet, Sci. Adv. 3, 1603106 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    B.C. Thomson, J.M.J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008) CrossRefGoogle Scholar
  15. 15.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mcculloch, C.S. Ha, M. Ree, Nat. Mater. 5, 197 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Nenashev, M. Wiemer, A.V. Dvurechenski, L.V. Kulik, A.B. Pevtsov, F. Gebhard, M. Koch, S.D. Baranovskii, Phys. Rev. B 95, 104207 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    I. Constantinou, X. Yi, N.T. Shewmon, E.D. Klump, C. Peng, S. Garakyaraghi, C.K. Lo, J.R. Reynolds, F.N. Castellano, F. So, Adv. Energy Mater. 7, 1601947 (2017) CrossRefGoogle Scholar
  18. 18.
    Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 356, 59 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    E.T. Hoke, I.T. Sachs-Quintana, M.T. Lloyd, I. Kauvar, W.R. Mateker, A.M. Nardes, C.H. Peters, N. Kopidakis, M.D. McGehee, Adv. Energy Mater. 2, 1351 (2012) CrossRefGoogle Scholar
  20. 20.
    L.S. Bernstein, R.M. Shroll, D.K. Lynch, F.O. Clark, Astrophys. J. 836, 229 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    A. C. Brieva, R. Gredel, C. Jäge, F. Huisken, T. Henning, Astrophys. J. 826, 122 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Tiago, P.R.C. Kent, R.Q. Hood, F.A. Reboredo, J. Chem. Phys. 129, 084311 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    P. Castellanos, O. Berné, Y. Sheffer, M.G. Wolfire, A.G. Tielens, Astrophys. J. 794, 83 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    O. Berné, N.L.J. Cox, G. Mulas, C. Joblin, Astron. Astrophys. 605, L1 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, J. Chem. Soc., Faraday Discuss. 138, 225 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kiely, G.J. Hutchings, J. Mater. Chem. 15, 4595 (2005) CrossRefGoogle Scholar
  27. 27.
    S.J. Freakley et al., Science 351, 959 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 43, 201001 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    A.Z. Msezane, Z. Felfli, A. Tesfamichael, K. Suggs, X.Q. Wang, Gold Bull. 45, 127 (2012) CrossRefGoogle Scholar
  30. 30.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 41, 105201 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    H. Hotop, W.C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985) ADSCrossRefGoogle Scholar
  32. 32.
    T. Andersen, H.K. Haugen, H. Hotop, J. Phys. Chem. Ref. Data 28, 1511 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    W. Zheng, X. Li, S. Eustis, A. Grubisic, O. Thomas, H. De Clercq, K. Bowen, Chem. Phys. Lett. 444, 232 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    K.C. Chartkunchand et al., J. Phys.: Conf. Ser. 875, 022051 (2017) Google Scholar
  35. 35.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, J. Phys. B 45, 045201 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    J. Li, Z. Zhao, M. Andersson, X. Zhang, C. Chen, J. Phys. B 45, 165004 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    R.J.J. Zollweg, Chem. Phys. 50, 4251 (1969) ADSGoogle Scholar
  38. 38.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 79, 012714 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    S.-B. Cheng, A.W. Castleman, Sci. Rep. 5, 12414 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 78, 012510 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    V.T. Davis, J.S. Thompson, J. Phys. B 37, 1961 2004 Google Scholar
  42. 42.
    Z. Felfli, A.Z. Msezane, Unpublished (2013) Google Scholar
  43. 43.
    Z. Felfli, A.Z. Msezane, J. Phys.: Conf. Ser. 875, 062011 (2017) Google Scholar
  44. 44.
    S. Rothe et al., Nat. Commun. 4, 1835 (2013) CrossRefGoogle Scholar
  45. 45.
    K.D. Dinov, D.R. Beck, Phys. Rev. A 53, 4031 (1996) ADSCrossRefGoogle Scholar
  46. 46.
    K.D. Dinov, D.R. Beck, Phys. Rev. A 52, 2632 (1995) ADSCrossRefGoogle Scholar
  47. 47.
    S.C. Frautschi, in Regge Poles and S-Matrix Theory (Benjamin, New York, 1963), Chap. X Google Scholar
  48. 48.
    V. de Alfaro, T. Regge, Potential Scattering (Amsterdam, North-Holland, 1995) Google Scholar
  49. 49.
    K.W. Thylwe, Eur. Phys. J. D 66, 7 (2012) ADSCrossRefGoogle Scholar
  50. 50.
    H.P. Mulholland, Proc. Camb. Philos. Soc. (Lond.) 24, 280 (1928) ADSCrossRefGoogle Scholar
  51. 51.
    J.H. Macek, P.S. Krstic, S.Y. Ovchinnikov, Phys. Rev. Lett. 93, 183202 (2004) ADSCrossRefGoogle Scholar
  52. 52.
    D. Sokolovski, Z. Felfli, S.Y. Ovchinnikov, J.H. Macek, A.Z. Msezane, Phys. Rev. A 76, 012705 (2007) ADSCrossRefGoogle Scholar
  53. 53.
    A.S. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B 48, 185103 (2015) ADSCrossRefGoogle Scholar
  54. 54.
    W. Jaskólski, Phys. Rep. 271, 1 (1996) ADSCrossRefGoogle Scholar
  55. 55.
    V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Rad. Phys. Chem. 70, 417 (2004) ADSCrossRefGoogle Scholar
  56. 56.
    M.J. Pushka, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993) ADSCrossRefGoogle Scholar
  57. 57.
    A.S. Baltenkov, Phys. Lett. A 254, 203 (1999) ADSCrossRefGoogle Scholar
  58. 58.
    M. Ya. Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998) ADSCrossRefGoogle Scholar
  59. 59.
    E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B 44, 015003 (2011) ADSCrossRefGoogle Scholar
  60. 60.
    M. Ya. Amusia, V.K. Dolmatov, L.V. Chernysheva, Phys. Rev. A 84, 063201 (2011) ADSCrossRefGoogle Scholar
  61. 61.
    Z. Chen, A.Z. Msezane, Eur. Phys. J. D 69, 88 (2015) ADSCrossRefGoogle Scholar
  62. 62.
    A.V. Korol, A.V. Solov’yov, J. Phys. B 43, 201004 (2010) ADSCrossRefGoogle Scholar
  63. 63.
    C.Y. Lin, Y. Ho, J. Phys. B 45, 145001 (2012) ADSCrossRefGoogle Scholar
  64. 64.
    V.K. Dolmatov, M.B. Cooper, M.E. Hunter, J. Phys. B 47, 115002 (2014) ADSCrossRefGoogle Scholar
  65. 65.
    M.E. Madjet, H.S. Chakraborty, S.T. Manson, Phys. Rev. Lett. 99, 243003 (2007) ADSCrossRefGoogle Scholar
  66. 66.
    M.E. Madjet, H.S. Chakraborty, J.M. Rost, S.T. Manson, J. Phys. B 41, 105101 (2008) ADSCrossRefGoogle Scholar
  67. 67.
    O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997) ADSCrossRefGoogle Scholar
  68. 68.
    A.L.D. Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010) ADSCrossRefGoogle Scholar
  69. 69.
    B. Li, G. O’Sullivan, C. Dong, J. Phys. B 46, 155203 (2013) ADSCrossRefGoogle Scholar
  70. 70.
    V.K. Dolmatov, D.A. Keating, J. Phys.: Conf. Ser. 388, 022010 (2012) Google Scholar
  71. 71.
    T.W. Gorczyca, M.F. Hasoglu, S.T. Manson, Phys. Rev. A 86, 033204 (2012) ADSCrossRefGoogle Scholar
  72. 72.
    R.A. Phaneuf et al., Phys. Rev. A 88, 053402 (2013) ADSCrossRefGoogle Scholar
  73. 73.
    M. Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 89, 057401 (2014) ADSCrossRefGoogle Scholar
  74. 74.
    V.K. Dolmatov, M.Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 95, 012709 (2017) ADSCrossRefGoogle Scholar
  75. 75.
    E.H. Lieb, B. Simon, Adv. Math. 23, 22 (1977) CrossRefGoogle Scholar
  76. 76.
    E.H. Lieb, Rev. Mod. Phys. 48, 553 (1976) ADSCrossRefGoogle Scholar
  77. 77.
    C.C. Tisdell, M. Holzer, Differ. Equ. Appl. 7, 27 (2015) MathSciNetGoogle Scholar
  78. 78.
    L.H. Thomas, Philos. Soc. 23, 542 (1928) Google Scholar
  79. 79.
    E. Fermi, Zeit. Phys. 48, 73 (1928) ADSCrossRefGoogle Scholar
  80. 80.
    L.D. Landau, E.M. Lifshitz, in Quantum Mechanics (Non-relativistic Theory) (Butterworth-Heinemann, Oxford, 1999), Vol. 3, p. 277 Google Scholar
  81. 81.
    S. Esposito, Am. J. Phys. 70, 851 (2002) ADSCrossRefGoogle Scholar
  82. 82.
    L.N. Epele, H. Fanchiotti, C.A. Garcá Canal, J.A. Ponciano, Phys. Rev. A 60, 280 (1999) ADSCrossRefGoogle Scholar
  83. 83.
    Z. Felfli, S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, in Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, edited by J. Govaerts, M.N. Hounkonnou, A.Z. Msezane (World Scientific, Singapore, 2004), p. 218 Google Scholar
  84. 84.
    T. Tietz, Z. Naturforsch. 26a, 1054 (1971) ADSGoogle Scholar
  85. 85.
    B. Berezina, Yu.N. Demkov, Zh. Eksp. Teor. Fiz. 68, 848 (1975) Google Scholar
  86. 86.
    S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 37, 6943 (2004) ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    S. Belov, K.-E. Thylwe, M. Marletta, A.Z. Msezane, S. N. Naboko, J. Phys. A 43, 365301 (2010) MathSciNetCrossRefGoogle Scholar
  88. 88.
    K.-E. Thylwe, P. McCabe, Eur. Phys. J. D 68, 323 (2014) ADSCrossRefGoogle Scholar
  89. 89.
    N.B. Avdonina, S. Belov, Z. Felfli, A.Z. Msezane, S.N. Naboko, Phys. Rev. A 66, 022713 (2002) ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    P. G. Burke, C. Tate, Comput. Phys. Commun. 1, 97 (1969) ADSCrossRefGoogle Scholar
  91. 91.
    J.N.L. Connor, J. Chem. Soc. Faraday Trans. 86, 1627 (1990) CrossRefGoogle Scholar
  92. 92.
    D.-L. Huang, P.D. Dau, H.T. Liu, L.-S. Wang, J. Chem. Phys. 140, 224315 (2014) ADSCrossRefGoogle Scholar
  93. 93.
    C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Chem. Phys. Lett. 233, 52 (1995) ADSCrossRefGoogle Scholar
  94. 94.
    X.B. Wang, H.K. Woo, X. Huang, M.M. Kappes, L.S. Wang, Phys. Rev. Lett. 96, 143002 (2006) ADSCrossRefGoogle Scholar
  95. 95.
    O.V. Boltalina, L.N. Sidorov, E.V. Sukhanova, E.V. Skokan, Rapid Commun. Mass Spectrom. 7, 1009 (1993) Google Scholar
  96. 96.
    O.V. Boltalina, E.V. Dashkova, L.N. Sidorov, Chem. Phys. Lett. 256, 253 (1996) ADSCrossRefGoogle Scholar
  97. 97.
    X.-B. Wang, H.-K. Woo, J. Yang, M.M. Kappes, L.S. Wang, J. Phys. Chem. C 111, 17684 (2007) CrossRefGoogle Scholar
  98. 98.
    A.Z. Msezane, Z. Felfli, Chem. Phys. 503, 50 (2018) CrossRefGoogle Scholar
  99. 99.
    A.Z. Msezane, Z. Felfli, V.R. Shaginyan, M.Ya. Amusia, Int. J. Curr. Adv. Res. 6, 8503 (2017) Google Scholar
  100. 100.
    W.R. Johnson, C. Guet, Phys. Rev. A 49, 1041 (1994) ADSCrossRefGoogle Scholar
  101. 101.
    Z. Felfli, A.Z. Msezane, Eur. Phys. J. D 72, 78 (2018) ADSCrossRefGoogle Scholar
  102. 102.
    C. Winstead, V. McKoy, Phys. Rev. A 73, 012711 (2006) ADSCrossRefGoogle Scholar
  103. 103.
    R.R. Lucchese, F.A. Gianturco, N. Sanna, Chem. Phys. Lett. 305, 413 (1999) ADSCrossRefGoogle Scholar
  104. 104.
    F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Phys. B 32, 2181 (1999) ADSCrossRefGoogle Scholar
  105. 105.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 111, 6769 (1999) ADSCrossRefGoogle Scholar
  106. 106.
    N. Ipatov, V.K. Ivanov, J.M. Pacheco, W. Ekardt, J. Phys. B 31, L5119 (1998) CrossRefGoogle Scholar
  107. 107.
    H. Tanaka, L. Boesten, K. Onda, O. Ohashi, J. Phys. Soc. Jpn. 63, 485 (1994) ADSCrossRefGoogle Scholar
  108. 108.
    O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B: At. Mol. Phys. 30, 4633 (1997) ADSCrossRefGoogle Scholar
  109. 109.
    M. Lezius, P. Scheier, T.D. Märk, Chem. Phys. Lett. 203, 232 (1993) ADSCrossRefGoogle Scholar
  110. 110.
    T. Jaffke, E. Illenberger, M. Lezius, S. Matejcik, D. Smith, T.D. Märk, Chem. Phys. Lett. 226, 213 (1994) ADSCrossRefGoogle Scholar
  111. 111.
    J. Huang, H.S. Carman, R.N. Compton, J. Phys. Chem. 99, 1719 (1995) CrossRefGoogle Scholar
  112. 112.
    L. Kronik, R. Fromherz, E. Ko, G. Ganteför, J.R. Chelikowsky, Nat. Mater. 1, 49 (2002) ADSCrossRefGoogle Scholar
  113. 113.
    Z. Felfli, A.Z. Msezane, J. Phys.: Conf. Ser. 875, 052014 (2017) Google Scholar
  114. 114.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 81, 042707 (2010) ADSCrossRefGoogle Scholar
  115. 115.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 78, 012510 (2008) ADSCrossRefGoogle Scholar
  116. 116.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 79, 012511 (2009) ADSCrossRefGoogle Scholar
  117. 117.
    W.M. Haynes, Atomic, olecular, and optical physics; electron affinities, in CRC Handbook of Chemistry and Physics, 92nd edn. (CRC Press, Boca Raton, FL, 2011–2012), Sect. 10 Google Scholar
  118. 118.
    V.G. Zakrzewski, O. Dolgounitcheva, J.V. Ortiz, J. Phys. Chem. A 118, 7424 (2014) CrossRefGoogle Scholar
  119. 119.
    Y. Achiba, M. Kohno, M. Ohara, S. Suzuki, H. Shiromaru, J. Electron Spectrosc. Relat. Phenom. 142, 231 (2005) CrossRefGoogle Scholar
  120. 120.
    S. Yang, K.J. Taylor, M.J. Craycraft, J. Conceicao, C.L. Pettiette, O. Cherhnovsky, R.E. Smalley, Chem. Phys. Lett. 144, 431 (1989) ADSCrossRefGoogle Scholar
  121. 121.
    A. Munoz-Castro, R. Bruce King, J. Comput. Chem. 38, 44 (2017) CrossRefGoogle Scholar
  122. 122.
    K. Zhao, R.M. Pitzer, J. Phys. Chem. 100, 4798 (1996) CrossRefGoogle Scholar
  123. 123.
    H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Phys. Rev. Lett. 81, 5378 (1998) ADSCrossRefGoogle Scholar
  124. 124.
    S. Nagase, K. Kabayashi, Chem. Phys. Lett. 228, 106 (1999) ADSCrossRefGoogle Scholar
  125. 125.
    X.B. Wang, H.K. Woo, L.S. Wang, J. Chem. Phys. 123, 051106 (2005) ADSCrossRefGoogle Scholar
  126. 126.
    R.J. Tarento, P. Joyes, Z. Phys. D 37, 165 (1996) ADSCrossRefGoogle Scholar
  127. 127.
    L.-S. Wang, J.J. Conceicao, C.M. Jin, R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991) ADSCrossRefGoogle Scholar
  128. 128.
    X.-B. Wang, C.-F. Ding, L.-S. Wang, J. Chem. Phys. 110, 8217 (1999) ADSCrossRefGoogle Scholar
  129. 129.
    B. Palpant, A. Otake, F. Hayakawa, Y. Negishi, G.H. Lee, A. Nakajima, K. Kaya, Phys. Rev. B 60, 4509 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and CTSPSClark Atlanta UniversityAtlantaUSA

Personalised recommendations