Advertisement

Practical decoy state quantum key distribution with detector efficiency mismatch

  • Yang-yang Fei
  • Xiang-dong Meng
  • Ming Gao
  • Zhi Ma
  • Hong Wang
Regular Article

Abstract

Decoy state method is widely used in practical quantum key distribution (QKD) systems to substantially extend the secure communication distance. Detector efficiency mismatch (DEM), which exists between practical detectors, effects the security of practical QKD systems seriously. Security of single photon QKD with DEM has been analyzed. However, estimate of the phase error rate still remains difficult in practice. Here, using a simple equivalent detection model, the mutual information between legitimate users and the eavesdropper for single photon state in QKD with DEM is analyzed. Then we improve the security analysis to cover the situation of weak coherent QKD with DEM. A general theory of the decoy state QKD with DEM is proposed to calculate the lower bound of count rate and the upper bound of error rate of single photon state signals. The numerical simulations show that secure key can also be generated, but the existing of DEM will reduce the secure key of practical decoy state QKD systems. The experiment parameter related security bound of DEM is also given out.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York (1984), Vol. 175 Google Scholar
  2. 2.
    B. Huttner, N. Imoto, N. Gisin, T. Mor, Phys. Rev. A 51, 1863 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    V. Makarov, D.R. Hjelme, J. Mod. Opt. 52, 691 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    V. Makarov, A. Anisimov, J. Skaar, Phys. Rev. A 74, 022313 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    V. Makarov, J. Skaar, Quantum Inf. Comput. 8, 622 (2008) MathSciNetGoogle Scholar
  6. 6.
    B. Qi, C.-H.F. Fung, H.-K. Lo, X.F. Ma, Quantum. Inf. Comput. 7, 73 (2007) MathSciNetGoogle Scholar
  7. 7.
    Y. Zhao, C.-H.F. Fung, B. Qi, C. Chen, H.-K. Lo, Phys. Rev. A 78, 042333 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy, Phys. Rev A 73, 022320 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    N. Jain et al., New J. Phys. 16, 123030 (2014) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Weier et al., New J. Phys. 13, 073024 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    C. Wiechers et al., New J. Phys. 13, 013043 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    C.-H.F. Fung, B. Qi, K. Tamaki, H.-K. Lo, Phys. Rev. A 75, 032314 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    F. Xu, B. Qi, H.-K. Lo, New J. Phys. 12, 113026 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    A. Lamas-Linares, C. Kurtsiefer, J. Opt. Express 15, 9388 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    W.-L. Wang, M. Gao, Z. Ma, J. Phys. A: Math. Theor. 46, 455301 (2013) CrossRefGoogle Scholar
  16. 16.
    L. Lydersen et al., Nat. Photonics 4, 686 (2010a) ADSCrossRefGoogle Scholar
  17. 17.
    L. Lydersen et al., Opt. Express 18, 27938 (2010b) ADSCrossRefGoogle Scholar
  18. 18.
    S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, V. Makarov, Opt. Express 19, 23590 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    V. Makarov, New J. Phys. 11, 065003 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    L. Lydersen, M.K. Akhlaghi, A.H. Majedi, J. Skaar, V. Makarov, New J. Phys. 13, 113042 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    H.-W. Li et al., Phys. Rev. A 84, 062308 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    S.-H. Sun, M.-S. Jiang, L.-M. Liang, Phys. Rev. A 83, 062331 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    S.-H. Sun, M. Gao, M.-S. Jiang, C.-Y. Li, L.-M. Liang, Phys. Rev. A 85, 032304 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    W.-T. Liu, S.-H. Sun, L.-M. Liang, J.-M. Yuan, Phys. Rev. A 83, 042326 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    Y.-L. Tang et al., Phys. Rev. A 88, 22308 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    S.-H. Sun, M.-S. Jiang, X.-C. Ma, C.-Y. Li, L.-M. Liang, Sci. Rep. 4 (2014) Google Scholar
  27. 27.
    W.Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    H.-K. Lo, X.-F. Ma, K. Chen, Phys. Rev. Lett. 94, 230504 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    B. Qi, C.H. Fung, H.-K. Lo, X.-F. Ma, Quantum Inf. Comput. 7, 73 (2007) Google Scholar
  31. 31.
    N. Jain et al., Phys. Rev. Lett. 107, 110501 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Y.Y. Fei, X.-D. Meng, M. Gao, H. Wang, Z. Ma, Sci. Rep. 8 (2018) Google Scholar
  33. 33.
    C.-H.F. Fung, K. Tamaki, B. Qi, H.-K. Lo, X.F. Ma, Quantum Inf. Comput. 9, 131 (2009) MathSciNetGoogle Scholar
  34. 34.
    L. Lydersen, J. Skaar, Quantum Inf. Comput. 10, 60 (2010) MathSciNetGoogle Scholar
  35. 35.
    O. Marøy, L. Lydersen, J. Skaar, Phys. Rev. A 82, 032337 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    P.M. Nielsen et al., J. Mod. Optics 48, 1921 2001 Google Scholar
  37. 37.
    H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    T.F.D. Silva, G.C.D. Amaral, G.B. Xavier, G.P. Temporó, J.P.V.D. Weid, IEEE J. Sel. Top. Quantum Electron. 21, 167 (2014) Google Scholar
  39. 39.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, J. Rev. Mod. Phys. 74, 145 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    N. Lütkenhaus, A. Shields, New J. Phys. 11, 045005 (2009) CrossRefGoogle Scholar
  41. 41.
    V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices, in Proceedings International Symposium on IEEE on Information Theory 2004. ISIT 2004 (2004), p. 136 Google Scholar
  43. 43.
    I. Csiszàr, J. Korner, IEEE Trans. Inf. Theory 24, 339 (1978) CrossRefGoogle Scholar
  44. 44.
    U.M. Maurer, IEEE Trans. Inf. Theory 39, 733 (1993) CrossRefGoogle Scholar
  45. 45.
    X.-F. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    C. Gobby, Z.-L. Yuan, A.J. Shields, Appl. Phys. Lett. 84, 3762 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    Y.-Y. Fei, M. Gao, W.-L. Wang, C.-B. Li, Z. Ma, Phys. Rev. A 91, 052305 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhouP.R. China
  2. 2.CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations